EN 10208 carbon steel pipe

EN 10208 carbon steel pipes are used for transporting gas, oil, combustible fluids with specific pressure in the mining, chemical, and power engineering industry.

The pipes are manufactured with the diameters between 21,3 – 660 mm and with the wall thickness of up to 40 mm in the case of hot rolled seamless pipes, and with the diameters between 10,2 – 108 and with the wall thickness of up to 10 mm in the case of cold drawn seamless pipes.

EN 10208 carbon steel pipe

The pipes are utilised for transporting gas, oil, combustible fluids with certain stress inside the mining, chemical, and power engineering sector.

The pipes are manufactured with all the diameters amongst 21,3 - 660 mm and using the wall thickness of as much as 40 mm within the case of hot rolled seamless pipes, and with all the diameters between 10,2 - 108 and together with the wall thickness of as much as ten mm inside the case of cold drawn seamless pipes.

Manufacturing

seamless steel pipes and welded steel pipes.

Steel grades used requirement class A

BS EN 10208-2 is the European regular that specifies the technical delivery conditions for seamless and welded steel pipes for the on land transport of combustible fluids mostly in gas provide systems but excluding pipeline applications inside the petroleum and all-natural gas industries. It consists of far more stringent quality and testing needs than those in BS EN 10208-1.

Steel pipes for pipeline transportation systems inside the petroleum and natural gas industries are covered by ISO 3183. BS EN 10208-2 specifies products with the identical (and additional) strength levels and partly related (but not identical) specifications as EN 10208-1 and EN 10208-2 and is with two extra annexes specifying deviating or extra needs also published as API Spec 5L.

Pipe types and the manufacturing process (original material, plastic forming and thermal processing state)

Pipe type Original material Plastic forming of the pipe1) Thermal processing state Thermal processing symbol
Seamless (S) Ingot or block Hot rolling Normalization or normalization plastic forming N
Heat treatment Q
Hot rolling and cold finishing Normalization N
Heat treatment Q
High frequency welding (HFW) Normalized rolled strips Cold forming Normalization of the weld area N
Thermomechanically rolled strips Heat treated weld area M
Hot rolled strips or normalized rolled strips Cold forming and reduction with hot tensioning at controlled temperature so as to achieve a normalized state Normalization (whole pipe) N
- N
Submerged arc welding (SAW) -longitudinal (SAWL) -spiral (SAWH) or combined welding (COW) -longitudinal (COWL) –spiral (COWH_ Normalized or normalized rolled sheets or strips Cold forming - N
Thermomechanically rolled sheets or strips
Rolled sheets or strips Normalization plastic forming - M
Normalized or normalized rolled sheets or strips N

Chemical composition according to the ladle analysis for the wall thickness of < or= 25mm

Steel  designation Maximum content, % CEV max.
Steel symbol C Si Mn P S V Nb Ti Other
Steels for seamless and welded pipes
L245NB 
L290NB 
L360NB 
L415NB
0,16
0,17
0,20
0,21

0,40
0,40
0,45
0,45

1,1
1,2
1,6
1,6

0,025
0,025
0,025
0,025


0,05 
0,10 
0,15


0,05
0,10
0,15


0,05
0,05
0,05


0,04
0,04
0,04

  0,42 
0,42 
0,42 
0,45 
to be negotiated
Steels for seamless pipes
L360QB 
L415QB 
L450QB 
L485QB 
L555QB
0,16
0,16
0,16
0,16
0,16
0,45
0,45
0,45
0,45
0,45
1,4
1,6
1,6
1,7
1,8
0,025
0,025
0,025
0,025
0,025
0,020
0,020
0,020
0,020
0,020
0,05
0,08
0,09
0,10
0,10
0,05
0,05
0,05
0,05
0,06
0,04
0,04
0,06
0,06
0,06
  0,42 
0,43 
0,45 
0,45 
to be negotiated
Steels for welded pipes
L245MB 
L290MB 
L360MB 
L415MB 
L450MB 
L485MB 
L555MB
0,16
0,16
0,16
0,16
0,16
0,16
0,16
0,45
0,45
0,45
0,45
0,45
0,45
0,45
1,5
1,5
1,6
1,6
1,6
1,7
1,8
0,025
0,025
0,025
0,025
0,025
0,025
0,025
0,020
0,020
0,020
0,020
0,020
0,020
0,020
0,04
0,04
0,05
0,08
0,10
0,10
0,10
0,4 
0,4 
0,5 
0,5 
0,5 
0,6 
0,6


0,04
0,06
0,06
0,06
0,06
  0,40 
0,40 
0,41 
0,42 
0,43 
0,43 
to be negotiated

Required tension and bending test results for the wall thickness of < or = 25mm and of the pressure water test

Steel designation Pipe body (seamless pipe and welded pipe) Spiral weld Whole pipe
HFW, SAW, COW SAW, COW
Steel symbol Plastic limit R 10,5N/mm 2 Tensile strength R mN/mm 2min. R10,5/RmMax Elongation A% min. Tensile strength R mN/mm 2min Diameter of the bending mandrel bar in the bending test Pressure water test
L245NB 
L245MB
245 to 440 415 0,80 
0,85
22 The same values as for the pipe body apply 3T Every pipe should be subject to the test and it should be free of any leaks or deformations
L290NB 
L290MB
290 to 440 415 0,85 
0,85
21 3T
L360NB 
L360QB 
L360MB
360 to 510 460 0,85 
0,88 
0,85
20 4T
L415NB 
L415QB 
L415MB
415 to 565 520 0,85 
0,88 
0,85
18 5T
L450QB 
L450MB
450 to 570 535 0,90 
0,87
18 6T
L485QB 
L485MB
485 to 605 570 0,90 
0,90
18 6T
L555QB 
L555MB
555 to 675 625 0,90 
0,90
18 6T

BS EN 10208-2 does not apply to cast steel pipe.

It was the intention, when preparing this document, to avoid specifying the high-quality of line pipe to become utilised to get a certain application. Nonetheless, it was recognized that there are actually several high quality levels commonly made use of, and it was decided to reflect these inside the common by the differentiation involving two high-quality levels.

Firstly, the need was recognized to supply a standard top quality level. This really is designated requirement class A and considered in BS EN 10208-1.

Secondly, a lot of purchasers impose needs extra towards the basic regular, as an illustration concerning toughness and non-destructive inspection. This method is popular, as an example, for transmission pipelines.

Such enhanced needs are addressed in requirement class B and regarded in BS EN 10208-2.

For offshore applications and also other applications outside the scope of BS EN 10208-1 and BS EN 10208-2, other requirements may perhaps be applicable, e.g. ISO 3183.

The Charpy impact power needs within this document happen to be derived from established data, in accordance with EPRG recommendations, and are intended to prevent the occurrence of extended running shear fracture in pipelines transporting clean, dry natural gas. It truly is the duty from the designer to determine irrespective of whether these energy requirements suffice for the intended application. One example is, rich gas or two-phase fluids may well need additional testing to become carried out.

For pipes of requirement class B, a weld efficiency issue of 1,0 might be utilized in design calculations, because of the conditions specified for the manufacture of the pipes and for the testing with the tubes.

The selection of the requirement class will depend on lots of components: the properties in the fluid to be conveyed, the service conditions, design and style code and any statutory requirements must all be taken into consideration. BS EN 10208-2 provides no detailed suggestions. It is actually the ultimate duty of the user to choose the appropriate requirement class for the intended application.

This document combines a wide array of item varieties, dimensions and technical restrictions in accordance with the functional specifications for gas supply systems referred to in BS EN 1594 Gas provide systems. Pipelines for maximum operating pressure more than 16 bar. Functional needs.

DIN steel heat exchangers tubes

DIN steel heat exchanger tubes, meeting German Industrial Standards, are constructed from high-temperature and corrosion-resistant steel, specifically designed for efficient heat exchange applications.

DIN steel heat exchangers tubes
DIN steel heat exchangers tubes
DIN steel heat exchangers tubes
DIN steel heat exchangers tubes
DIN steel heat exchangers tubes
DIN steel heat exchangers tubes

Seamless tube processing

With years of expertise, we provide a diverse array of steel tube processing options. From sawing and machining tube blanks to intricate bending and upsetting operations, we actively assist you throughout your projects.

Our capabilities extend to eccentricity reduction and concentricity enhancement through turning and grinding. We excel in creating complex geometries using processes like rotary swaging and axial forming. Additionally, we offer property modifications via partial heat treatment, ensuring tailored solutions for your specific needs.

Variable wall thicknesses

Variable wall thicknesses

Drilling / stamping / lasering

Drilling / stamping / lasering

Peeling / roller burnishing

Peeling / roller burnishing

Cold forming

Cold forming

Cutting

Cutting

Beveling

Beveling

Deburring

Deburring

Thread rolling / threading

Thread rolling / threading

Partial hardening

Partial hardening

Turning / milling / grinding

Turning / milling / grinding

Reducing / expanding

Reducing / expanding

Machining

Machining

application

Application

Alloy steel pipes are ideally suitable for chemical, petrochemicals, and other energy-related applications.

The alloy steel pipe adopts high quality carbon steel, alloy structural steel and stainless & heat resisting steel as raw material through hot rolling or cold drawn to be made.

Alloy steel can be used in process area where carbon steel has limitation such as

As an important element of steel products, alloy steel pipe can be divided into seamless steel pipe and welded steel pipe according to the manufacturing technique and tube billet shape.

Here you can see the common alloy steel grade that you will come across.

Why the application of alloy steel pipe is wider than others

There are many kinds of materials used for transport in industrial production. Specifically we will have more choices and it is not limited to the use of alloy steel pipe. But even in the face of more choices, many people tend to choose alloy steel pipe. People make their own choices will have their own reasons. This means the alloy steel pipe application has its own advantages. Compared with transmission lines made of other materials, after it meets the basic application requirements, its quantity is lighter. Then in the practical application of alloy steel pipe, it will have more advantages because of this. Besides its physical characteristic advantage, it also has economic advantages. The wide application of alloy steel pipe is with kinds of reasons. So in practical usage, we can exploit the advantages to the full, in this way can we get more profits in these applications of alloy steel pipe.

What requirements should alloy steel pipe application meet

The transportation of kinds of gases or liquids in production needs to rely on alloy steel pipe. This shows that the actual role of alloy steel pipe application is important. High temperature resistant and low temperature resistant is the tolerance of temperature. In the practical application of alloy steel pipe, there will be many materials need to be transported. However their temperatures are not the same. So this can be the basic requirement to alloy steel pipe. It needs more corrosion resistance. Corrosion resistant material is the best material during transporting, because it is corrosion resistant. So it can be used in more occasions. And it is definitely very convenient for users.

The biggest advantages of alloy steel pipe

Can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy steel pipe total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy steel pipe to provide a wider space for the development of the industry. The future needs of the average annual growth of China’s high-pressure alloy steel pipe long products up to 10-12%.

Specification, standard and identification of alloy steel pipes

Alloy Steel pipe contains substantial quantities of elements other than carbon such as nickel, chromium, silicon, manganese, tungsten, molybdenum, vanadium and limited amounts of other commonly accepted elements such as manganese, sulfur, silicon, and phosphorous.

Industries We Serve

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The biggest advantages of alloy steel pipe can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy tube total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy tube to provide a wider space for the development of the industry. According to the Chinese Special Steel Association alloy pipe Branch Expert Group, the future needs of the average annual growth of China’s high-pressure alloy pipe long products up to 10-12%.

Alloying Elements

Commonly used alloying elements and their effects are listed in the table given below.

Alloying Elements Effect on the Properties
Chromium Increases Resistance to corrosion   and oxidation. Increases hardenability and wear resistance. Increases high   temperature strength.
Nickel Increases hardenability. Improves   toughness. Increases impact strength at low temperatures.
Molybdenum Increases hardenability, high   temperature hardness, and wear resistance. Enhances the effects of other   alloying elements. Eliminate temper brittleness in steels. Increases high   temperature strength.
Manganese Increases hardenability. Combines   with sulfur to reduce its adverse effects.
Vanadium Increases hardenability, high   temperature hardness, and wear resistance. Improves fatigue resistance.
Titanium Strongest carbide former. Added to   stainless steel to prevent precipitation of chromium carbide.
Silicon Removes oxygen in steel making.   Improves toughness. Increases hardness ability
Boron Increases hardenability. Produces   fine grain size.
Aluminum Forms nitride in nitriding steels.   Produces fine grain size in casting. Removes oxygen in steel melting.
Cobalt Increases heat and wear   resistance.
Tungsten Increases hardness at elevated   temperatures. Refines grain size.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.

Ni-Hard Wearback Pipes Ni-Hard Wearback Pipes
//右侧淡出对话框