ASTM A511/A511M

ASTM A511 is a standard specification for seamless stainless steel mechanical tubing.

Download PDF
ASTM A511 Stainless Steel Mechanical Tube

This specification covers seamless stainless tubing for use in mechanical applications where corrosion-resistant or high-temperature strength is needed. The steel may be cast in ingots or may be strand cast. When steel of different grades is sequentially strand cast, identification of the resultant transition material is required. The tubes shall be made by a seamless process and by either cold working or hot working as specified. Seamless steel tubing is a tubular product made without a welded seam. It is usually manufactured by hot working steel and then cold finishing the hot-worked tubing to produce the desired shape, dimensions and properties All austenitic tubes shall be furnished in the annealed condition. An analysis of each heat of steel shall be made to determine the percentages of the elements specified. If secondary melting processes are employed, the heat analysis shall be obtained from one remelted ingot or the product of one remelted ingot of each primary melt.

Scope

1.1 This specification covers seamless stainless tubing for use in mechanical applications or as hollow bar for use in the production of hollow components such as, but not limited to nozzles, reducers, and couplings by machining where corrosion-resistant or high-temperature strength is needed. The grades covered are listed in Table 1 , Table 2, and Table 3.

1.2 This specification covers seamless cold-finished mechanical tubing and hollow bar and seamless hot-finished mechanical tubing and hollow bar in sizes up to 123/4 in. [325 mm] in outside nominal diameter (for round tubing) with wall thicknesses or inside diameters as required.

1.3 Tubes for mechanical applications shall be furnished in one of the following shapes, as specified by the purchaser: round, square, rectangular, or special. Tubes to be used as hollow bar shall be furnished in round shape.

1.4 Optional supplementary requirements are provided and when desired, shall be stated in the order.

1.5 The values stated in inch-pound units are to be regarded as the standard. Within the text, the SI units are shown in square brackets. The values stated in each system are not exact equivalents; therefore, each system shall be used independently of the other.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

TABLE 1 Chemical Requirements of Austenitic Stainless steels

Grade Carbon Mn
max
P
max
S
max
Si
max
Ni Cr Mo Ti Columbium plus Tantalum Se
MT 302 0.08 to 0.20 2 0.04 0.03 1 8.0–10.0 17.0–19.0 ... ... ... ...
MT 303 0.15 max 2 0.2 0.15 min 1 8.0–10.0 17.0–19.0 ... ... ... ...
MT 303Se 0.15 max 2 0.04 0.04 1 8.0–11.0 17.0–19.0 ... ... ... 0.12–0.2
MT 304 0.08 max 2 0.04 0.03 1 8.0–11.0 18.0–20.0 ... ... ... ...
MT 304L 0.035 maxA 2 0.04 0.03 1 8.0–13.0 18.0–20.0 ... ... ... ...
MT 305 0.12 2 0.04 0.03 1 10.0–13.0 17.0–19.0 ... ... ... ...
MT 309S 0.08 max 2 0.04 0.03 1 12.0–15.0 22.0–24.0 ... ... ... ...
MT 310S 0.08 max 2 0.04 0.03 1 19.0–22.0 24.0–26.0 ... ... ... ...
MT 316 0.08 max 2 0.04 0.03 1 11.0–14.0 16.0–18.0 2.0–3.0 ... ... ...
MT 316L 0.035 maxA 2 0.04 0.03 1 10.0–15.0 16.0–18.0 2.0–3.0 ... ... ...
MT 317 0.08 max 2 0.04 0.03 1 11.0–14.0 18.0–20.0 3.0–4.0 ... ... ...
MT 321 0.08 max 2 0.04 0.03 1 9.0–13.0 17.0–20.0 ... B ... ...
MT 347 0.08 max 2 0.04 0.03 1 9.0–13.0 17.0–20.0 ... ... C ...

A For small diameter or thin wall tubing or both, where many drawing passes are required, a maximum of 0.040 % carbon is necessary in grades MT-304L and MT-316L. Small outside diameter tubes are defined as those under a 0.500 in. [12.7 mm] outside diameter and light-wall tubes as those under a 0.049 in. [1.2 mm] average wall thickness (0.044 in. [1.1 mm] min wall thickness).

B The titanium content shall be not less than five times the carbon content and not more than 0.60 %.

C The columbium plus tantalum content shall be not less than ten times the carbon content and not more than 1.00 %.

TABLE 2 Chemical Requirements of Ferritic and Martensitic Stainless Steels

Grade Composition, %
Carbon, max
Manga-
nese,
max
Phos-
phorus,
max
Sulfur,
max
Silicon, max
Nickel
Chromium
Molyb-
denum
Aluminum
Copper
Nitrogen
Selenium
Martensitic
MT 403 0.15 1.00 0.040 0.030 0.50 0.50 max 11.5–13.0 0.60 max
MT 410 0.15 1.00 0.040 0.030 1.00 0.50 max 11.5–13.5 ... ... ... ... ...
MT 414 0.15 1.00 0.040 0.030 1.00 1.25–2.50 11.5–13.5 ... ... ... ... ...
MT 416Se 0.15 1.25 0.060 0.060 1.00 0.50 max 12.0–14.0 ... ... ... ... 0.12–0.20
MT 431 0.20 1.00 0.040 0.030 1.00 1.25–2.50 15.0–17.0 ... ... ... ... ...
MT 440A 0.60 to 0.75 1.00 0.040 0.030 1.00 ... 16.0–18.0 0.75 max ... ... ... ...

Ferritic
MT 405 0.08 1.00 0.040 0.030 1.00 0.50 max 11.5–14.5 ... 0.10–0.30 ... ... ...
MT 429 0.12 1.00 0.040 0.030 1.00 0.50 max 14.0–16.0 ... ... ... ... ...
MT 430 0.12 1.00 0.040 0.030 1.00 0.50 max 16.0–18.0 ... ... ... ... ...
MT 443 0.20 1.00 0.040 0.030 1.00 0.50 max 18.0–23.0 ... ... 0.90–1.25 ... ...
MT 446–1 0.20 1.50 0.040 0.030 1.00 0.50 max 23.0–30.0 ... ... ... 0.25 max ...
MT 446–2A 0.12 1.50 0.040 0.030 1.00 0.50 max 23.0–30.0 ... ... ... 0.25 max ...
29-4 0.010 0.30 0.025 0.020 0.20 0.15 max 28.0–30.0 3.5–4.2 ... 0.15 max 0.020 max ...
29-4-2 0.010 0.30 0.025 0.020 0.20 2.0–2.5 28.0–30.0 3.5–4.2 ... 0.15 max 0.020 maxB ...

A MT446-2 is a lower carbon version of MT446-1, that has a lower tensile strength but improved ductility and toughness.

B Carbon plus nitrogen = 0.025 max %.

TABLE 3 Chemical Requirements of Austenitic-Ferritic Stainless Steels A

Grade Composition, %
Carbon Manganese, max Phosphorus, max Sulfur, max Silicon, max Nickel Chromium Molybdenum Nitrogen Copper Others
S31260 0.030 1.00 0.030 0.030 0.75 5.5–7.5 24.0–26.0 2.5–3.5 0.10–0.30 0.20–0.80 W 0.10–0.50
S31803 0.030 2.00 0.030 0.020 1.00 4.5–6.5 21.0–23.0 2.5–3.5 0.08–0.20 ... ...
S32101 0.040 4.0–6.0 0.040 0.030 1.00 1.35–1.70 21.0–22.0 0.10–0.80 0.20–0.25 0.10–0.80 ...
S32205 0.030 2.00 0.030 0.020 1.00 4.5–6.5 22.0–23.0 3.0–3.5 0.14–0.20 ...
S32304 0.030 2.50 0.040 0.040 1.00 3.0–5.5 21.5–24.5 0.05–0.60 0.05–0.20 0.05–0.60 ...
S32506 0.030 1.00 0.040 0.015 0.90 5.5–7.2 24.0–26.0 3.0–3.5 0.08–0.20 ... W 0.05–0.30
S32550 0.040 1.50 0.040 0.030 1.00 4.5–6.5 24.0–27.0 2.9–3.9... 0.10–0.25 1.50–2.50 ...
S32707 0.030 1.50 0.035 0.010 0.50 5.5–9.5 26.0–29.0 4.0–5.0 0.30–0.50 1.0 Co 0.5–2.0
S32750 0.030 1.20 0.035 0.020 0.80 6.0–8.0 24.0–26.0 3.0–5.0 0.24–0.32 0.50 ...
S32760B 0.05 1.00 0.030 0.010 1.00 6.0–8.0 24.0–26.0 3.0–4.0 0.20–0.30 0.50–1.00 W 0.50–1.00
S32906 0.030 0.80-1.50 0.030 0.030 0.80 5.8–7.5 28.0–30.0 1.50–2.60 0.30–0.40 0.80 ...
S32808 0.030 1.10 0.030 0.010 0.50 7.0–8.2 27.0–27.9 0.80–1.20 0.30–0.40 W 2.10–2.50
S32950 0.030 2.00 0.035 0.010 0.60 3.5–5.2 26.0–29.0 1.00–2.50 0.15–0.35 ... ...
S39274 0.030 1.00 0.030 0.020 0.80 6.0–8.0 24.0–26.0 2.5–3.5 0.24–0.32 0.20–0.80 W 1.50–2.50

A Maximum, unless a range or minimum is indicated. Where ellipses (…) appear in this table, there is no requirement and analysis for the element need not be determined or reported.

B % Cr + 3.3 X % Mo + 16X % N ≥ 40.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.

Ni-Hard Wearback Pipes Ni-Hard Wearback Pipes
//右侧淡出对话框