EN 10216-2 P265GH Seamless Carbon Steel Tube

EN 10216-2 P265GH Seamless Carbon Steel Tubes are a type of steel tube that are suitable for high temperatures and pressures.

The "P"indicates that it is a pressure vessel steel grade, while "265" refers to the minimum yield strength of the material (265 MPa)."GH" indicates that the material is suitable for elevated temperature service.

EN 10216-1 non alloy steel tubes

EN 10216-2 is a European standard that specifies the technical delivery conditions for seamless non-alloy and alloy steel tubes for pressure purposes with specified elevated temperature properties.

The tubes are used in oil refineries, steam pipelines, power plants, and other projects. They are also used in the automobile, architectural, and oil and gas industries.

The tubes are varnished to prevent rust. They are hot-rolled and have a round cross section. The surface treatment is black paint or oiled. The tubes have a minimum tensile strength of 450 MPa. The yield strength is at least 280 MPa, and the elongation is at least 22%.

The tubes are available in diameters ranging from 10.2–711 mm and wall thicknesses ranging from 1.6–100 mm. The lengths are 5.8 m, 6 m, 11.8 m, or random.

What is 16Mo3 ASTM material equivalent to?

16Mo3 ASME plates are equivalent to ASTM A204 Grade B plates, EN 10028-2 15Mo3 plates, and BS 1501 243 B plates. These plates have similar chemical composition, mechanical properties, and high-temperature performance & are used interchangeably in various industrial applications.

What is the equivalent of 16Mo3 pipe?

EN10216-2 16Mo3 pipe ASTM equivalent is ASTM A335 Grade P1, also known as ASME SA335 Grade P1. The ASTM A335 Grade P1 pipe contains a bit higher molybdenum by mass and is also used in high temperature services.

What is 16Mo3 material specification?

16Mo3 is a EN10028 specified pressure vessel grade chrome molybdenum steel alloy for use in elevated working temperatures. The material is used as a weldable steel in the fabrication of industrial boilers and steel pressurised vessels found in the oil, gas and chemical industry.

This part of EN1026 specifies the technical delivery conditions in two test categories for seamless tubes for circular cross section, with specified elevated temperature properties, made of non-alloy and alloy steel.

Application

EN 10216 Seamless steel tubes for pressure purposes

DIN EN 10216-1

Seamless steel tubes for pressure purposes - Technical delivery conditions -Part 1: Non-alloy steel tubes with specified room temperature properties
Specifies the technical delivery conditions for two qualities, T1 and T2, of seamless tubes of circular cross section, with specified room temperature properties, made of non-alloy quality steel.

DIN EN 10216-2

Seamless steel tubes for pressure purposes - Technical delivery conditions - Part 2: Non alloy and alloy steel tubes with specified elevated temperature properties; German version EN 10216-2:2002+A2:2007
The document specifies the technical delivery conditions in two test categories for seamless tubes of circular cross section, with specified elevated temperature properties, made of non-alloy and alloy steel.

DIN EN 10216-3

Seamless steel tubes for pressure purposes -Technical delivery conditions - Part 3: Alloy fine grain steel tubes
Specifies the technical delivery conditions in two categories for seamless tubes of circular cross section, made of weldable alloy fine grain steel

DIN EN 10216-4

Seamless steel tubes for pressure purposes - Technical delivery conditions -Part 4: Non-alloy and alloy steel tubes with specified low temperature properties
Specifies the technical delivery conditionsin two categories for seamless tubes of circular crossection, made with specified low temperature properties, made of non-alloy and alloy steel.

DIN EN 10216-5

Seamless steel tubes for pressure purposes - Technical delivery conditions-Part 5: Stainless steel tubes; German version EN 10216-5:2004, Corrigendum to DIN EN 10216-5:2004-11; German version EN 10216-5:2004/AC:2008

This Part of this European Standard specifies the technical delivery conditions in two test categories for seamless tubes of circular cross-section made of austenitic (including creep resisting steels) and austenitic-ferritic stainless steel which are applied for pressure and corrosion resisting purposes at room temperature, at low temperatures or at elevated temperatures. It is important that the purchaser, at the time of enquiry and order, takes in account the requirements of the relevant national legal regulations for the intended application.

What Is Non Alloy Steel?

Steel is common called carbon steel because of the mixture of carbon atoms with iron atoms. The added elements provide the steel with ductility and strength. During the smelting process, other elements, such as aluminum is added to the steel making it an alloy steel. Non-alloy steel has no elements added to the steel as it is smelted.

Manufacturing

The manufacturing of steel is done by placing ore in a furnace a smelting the ore. The smelting process removes any impurities in the iron ore. Once the first smelting process is performed, the steel still has too much carbon content to become non-alloy steel. The smelting process is performed again and again until the carbon content in the ore falls below 1.5 percent of the total content.

Smelting

The smelting process melts the iron ore. By melting the ore, the extraction of elements and impurities can be accomplished. The manufacturer only wants the iron and a small amount of carbon from the ore to make non-alloy steel. During the smelting process, elements get added to the ore such as cobalt, copper and aluminum, which makes the steel an alloy steel. Non-alloy steel has no other elements added to the iron and carbon during the smelting process.

Tempering

The non-alloy steel must be tempered at a certain temperature because it does not use other elements to make it flexible and durable. Tempering non-alloy steel at a certain temperature make the steel more sensitive to cracking when being welded.

Applications

Non-alloy steel can be used for different applications. Steel bars used to strengthen concrete is a non-alloy steel. Wrought iron is another non-alloy steel because it has little to no carbon within the iron ore. The wrought iron is soft and easily workable into different shapes but has very little strength. Non-alloy steel is often used to make decorative metal gates and fences.

Related EN 10216-2 P265GH Seamless Carbon Steel Tube

Inspection and Test For EN 10216-2 Steel Pipe

Inspection and test type Test frequency Test category
Mandatory tests Ladle analysis One per ladle 1 2
Tensile testing in room temperature One per every test pipe X X
Flattening test for D<600mm and the ratio of D≤0.15 but T≤40mm or ring testing for D>150mm and T ≤40mm X X
Rolling test on a mandrel bar for D≤150mm and T≤10mm or ring testing for D≤114,3mm and T ≤12,5mm X X
Resilience testing at the temperature of 20 ºC X X
Tightness testing Every pipe X X
Dimensional testing   X X
Visual inspection   X X
NDT in order to identify longitudinal discontinuity Every pipe X X
Material identification for alloy steel X X
Optional tests Final product analysis One per ladle X X
Tensile testing at elevated temperature One per ladle and for the same thermal processing conditions X X
Resilience testing One per every test pipe X X
Resilience testing in the machine direction at the temperature of -10ºC for non-alloy steel grades X X
Wall thickness measurement at a distance from pipe ends   X X
NDT in order to identify transverse discontinuity
Every pipe
X X
NDT in order to identify delamination X X

Dimension for EN10216-2 Steel pipe

EN 10216-2 Outside diameter and wall thickness tolerances
Outside diameter D mm Permissible deviations
of outside diameter D
Permissible deviations of wall thickness
depending on the T/D ratio
≤0.025 >0.025
≤0.050
>0.050
≤0.10
>0.10
D≤219,1 +\- 1% or =\- 0.5mm depending on which is greater +\- 12,5% or 0.4 mm depending on which is greater
D>219,1 =\- 20% =\- 15% =\- 12,5% =\- 10%

For the outside diameter of D≥355,6 mm, local deviation outside of the upper deviation limit by further 5% of the wall thickness T is permitted

Process of seamless pipe

Cold drawn seamless steel tube deformed process

Cold Drawn Seamless Mechanical Tubing (CDS) is a cold drawn 1018/1026 steel tube which offers uniform tolerances, enhanced machinability and increased strength and tolerances compared to hot-rolled products.

Cold drawn seamless steel tube deformed process

Cold drawn steel tube is with hot-rolled steel coil as raw material, and tandem cold rolling pickled to remove oxide scale, its finished rolling hard roll, rolling hard volumes due to the continuous cold deformation caused by cold hardening strength, hardness increased indicators declined tough plastic, stamping performance will deteriorate, which can only be used for simple deformation of the parts.

Rolling hard roll can be used as the raw material of the hot-dip galvanizing plant, hot dip galvanizing line set annealing line. Rolling hard roll weight is generally 6 to 13.5 tons, the coil diameter of 610mm.

Hot rolled seamless steel pipe deformed process

Hot-rolled seamless steel pipe production base deformation process can be summarized as three stages: perforation, extension and finishing.

Hot rolled seamless steel pipe deformed process

The main purpose of the perforation process is to become a solid round billet piercing hollow shell. Capillary in the specifications, accuracy and surface quality can not meet the requirements of the finished product, further improvements are needed to deform the metal through. The main purpose of the stretching machine is further reduced sectional view (main compression wall) for a larger axial extension, so that the capillary improved dimensional accuracy, surface quality and organizational performance.

After stretching machine rolled steel pipe shortage collectively need further molding mill in order to achieve the requirements of the finished pipe. Rolled steel due to pass in the method widely used in the production of seamless steel tubes.

So far, due to the method pass rolling steel can be divided into two categories: core pension without rolling rolling (hollow body rolling), and with the mandrel. Sizing machines, reducing mill and stretch reducing mill belonging to the hole without mandrel type continuous rolling mills are generally coffin. Its main purpose is to reduce the diameter of the deformation process or sizing get finished steel, the wall thickness of process control, can make thinning, thickening or nearly unchanged.

All the traditional hole-type rolling machine with mandrel belong to extend machine. The main purpose is to reduce the deformation process perforated capillary wall thickness and outer diameter roll passes in the deformation zone and the mandrel posed, for a larger axial extension. At the same time a certain improvement in the organization, performance, accuracy, surface quality.

The main manufacturing technology of seamless carbon steel pipe

1.Plug rolling production

The production equipment consists of punching machine, automatic pipe rolling machine, coiling machine, sizing machine and reducing machine. The round tube is inserted into the hollow of the thick-walled tube, and the axes of the two rollers form an oblique angle with the rolling line. In recent years, the inclination angle has increased from 6° to 12° to 13° to 17°, increasing the speed of the punch. When producing structural seamless pipe with a diameter greater than 250mm, secondary perforation is used to reduce the thickness of the hollow billet wall. New technologies have also been developed to enhance the perforation process and improve the quality of the capillary.

2. Continuous rolling production

The production equipment includes punching machine, continuous rolling mill, and tension reduction machine. The round billet is pierced into a hollow billet, then inserted into the mandrel, and continuously rolled by 7 to 9 two-roll mills. After rolling, the mandrel bar is taken out and reheated to reduce tension. In 2014, the annual output of 140mm continuous rolling mills is 0.4 to 600,000 tons, which is 2 to 4 times that of plug mills. The characteristics of this unit are suitable for the production of steel pipes with a diameter of 168mm or less. However, the equipment investment is large, the installed capacity is large, and the processing and manufacturing are complex.

3. Three-roll rolling production

Three-roll rolling production is mainly used to produce thick-walled seamless steel pipes with high dimensional accuracy. The wall thickness accuracy of the seamless steel pipe produced by this manufacturing process can reach plus or minus 5%, and the pipe accuracy is twice that of the seamless steel pipe produced by other methods. This manufacturing technique developed rapidly with the invention of the new three-high skew rolling mill in the 1960s. The new type of rolling mill is characterized by rapidly rotating the inlet rotary rack to change the expansion angle of the tail, thereby preventing the triangle from appearing at the tail, and expanding the ratio of the outer diameter to the wall thickness of the production varieties from 12 to 35, which can not only produce thin-walled seamless welded steel pipes , but also can improve production capacity.

4. Extrusion tube production

The peeled round base is first perforated or expanded, then heated by induction heating or a salt bath, coated with lubricant, and loaded into the extruder. The metal is squeezed into the pipe through the circular gap between the mandrel and the tip of the pen. This manufacturing process is mainly used for the production of superalloy tubes, specialty tubes, composite tubes and non-ferrous metal tubes. It has a wide range of production but low volumes. The production of extruded tubes has also grown in recent years due to improvements in die materials, lubricants and extrusion speeds.

5. Cold rolling (cold drawing) production

This manufacturing process is used to produce small-diameter precision-shaped thin-walled low-carbon steel pipes. It is characterized by the use of multi-stage cycle manufacturing technology. In the 1960s, it began to develop in the direction of high speed, multi-line, long stroke and long tube blank. In addition, small roller mills have also been developed, mainly for the production of precision tubes with a thickness of less than 1mm. The cold rolling equipment is complex, the tool processing is difficult, and the specification conversion is not flexible. And usually a combined process of cold rolling and cold drawing is used, that is, cold rolling is used to reduce the wall thickness to obtain larger deformation, and cold drawing technology is used to obtain various specifications.

Cut to Length

Before cutting pipe and tubing

No matter the material, measure the diameter of the pipe or tube to be cut to ensure that you use the right-size tube cutter for the job. When determining how to make a straight cut, use a tape measure and a pencil or other writing instrument to mark on the surface where you want to cut. If possible, mark around the circumference of a pipe, especially when cutting with a handsaw. Ensure that a cut is as straight as possible by securing the pipe with a vise, clamp, miter box or even duct tape to keep the length from shifting out of place while cutting.

After cutting pipe and tubing

  • Unless a cut is perfectly clean, you should expect to remove burrs from around the edge, especially after sawing.
  • Use a deburring tool to clean the edge after tube cutting.
  • You may opt to use a metal file on the cut of a metal pipe.
Cut to length
application

Application

Alloy steel pipes are ideally suitable for chemical, petrochemicals, and other energy-related applications.

The alloy steel pipe adopts high quality carbon steel, alloy structural steel and stainless & heat resisting steel as raw material through hot rolling or cold drawn to be made.

Alloy steel can be used in process area where carbon steel has limitation such as

As an important element of steel products, alloy steel pipe can be divided into seamless steel pipe and welded steel pipe according to the manufacturing technique and tube billet shape.

Here you can see the common alloy steel grade that you will come across.

Why the application of alloy steel pipe is wider than others

There are many kinds of materials used for transport in industrial production. Specifically we will have more choices and it is not limited to the use of alloy steel pipe. But even in the face of more choices, many people tend to choose alloy steel pipe. People make their own choices will have their own reasons. This means the alloy steel pipe application has its own advantages. Compared with transmission lines made of other materials, after it meets the basic application requirements, its quantity is lighter. Then in the practical application of alloy steel pipe, it will have more advantages because of this. Besides its physical characteristic advantage, it also has economic advantages. The wide application of alloy steel pipe is with kinds of reasons. So in practical usage, we can exploit the advantages to the full, in this way can we get more profits in these applications of alloy steel pipe.

What requirements should alloy steel pipe application meet

The transportation of kinds of gases or liquids in production needs to rely on alloy steel pipe. This shows that the actual role of alloy steel pipe application is important. High temperature resistant and low temperature resistant is the tolerance of temperature. In the practical application of alloy steel pipe, there will be many materials need to be transported. However their temperatures are not the same. So this can be the basic requirement to alloy steel pipe. It needs more corrosion resistance. Corrosion resistant material is the best material during transporting, because it is corrosion resistant. So it can be used in more occasions. And it is definitely very convenient for users.

The biggest advantages of alloy steel pipe

Can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy steel pipe total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy steel pipe to provide a wider space for the development of the industry. The future needs of the average annual growth of China’s high-pressure alloy steel pipe long products up to 10-12%.

Specification, standard and identification of alloy steel pipes

Alloy Steel pipe contains substantial quantities of elements other than carbon such as nickel, chromium, silicon, manganese, tungsten, molybdenum, vanadium and limited amounts of other commonly accepted elements such as manganese, sulfur, silicon, and phosphorous.

Industries We Serve

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The biggest advantages of alloy steel pipe can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy tube total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy tube to provide a wider space for the development of the industry. According to the Chinese Special Steel Association alloy pipe Branch Expert Group, the future needs of the average annual growth of China’s high-pressure alloy pipe long products up to 10-12%.

Q&A

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The most important and desired changes in alloy steel are

Alloy steels are made by combining carbon steel with one or several alloying elements, such as manganese, silicon, nickel, titanium, copper, chromium and aluminum. These metals are added to produce specific properties that are not found in regular carbon steel. The elements are added in varying proportions (or combinations) making the material take on different aspects such as increased hardness, increased corrosion resistance, increased strength, improved formability (ductility); the weldability can also change.

Alloying Elements & Their Effects

Pipes, Tubes and Hollow Sections

Norms

Grade

Alloying Elements

Commonly used alloying elements and their effects are listed in the table given below.

Alloying Elements Effect on the Properties
Chromium Increases Resistance to corrosion   and oxidation. Increases hardenability and wear resistance. Increases high   temperature strength.
Nickel Increases hardenability. Improves   toughness. Increases impact strength at low temperatures.
Molybdenum Increases hardenability, high   temperature hardness, and wear resistance. Enhances the effects of other   alloying elements. Eliminate temper brittleness in steels. Increases high   temperature strength.
Manganese Increases hardenability. Combines   with sulfur to reduce its adverse effects.
Vanadium Increases hardenability, high   temperature hardness, and wear resistance. Improves fatigue resistance.
Titanium Strongest carbide former. Added to   stainless steel to prevent precipitation of chromium carbide.
Silicon Removes oxygen in steel making.   Improves toughness. Increases hardness ability
Boron Increases hardenability. Produces   fine grain size.
Aluminum Forms nitride in nitriding steels.   Produces fine grain size in casting. Removes oxygen in steel melting.
Cobalt Increases heat and wear   resistance.
Tungsten Increases hardness at elevated   temperatures. Refines grain size.

ASTM A335 Chrome Moly Pipe

ASTM A335 Pipe (ASME S/A335, Chorme-Moly) is a seamless ferritic Alloy-Steel Pipe for high temperature service.

ASTM A213 Alloy Tubes

ASTM A213 covers seamless ferritic and austenitic steel boiler,Boiler Tube, and heat-exchanger tubes for high temperature services, designated Grades T5, TP304, etc.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.