ASTM A333 Gr. 8 Low Temperature Steel Pipe

ASTM A333 Gr. 8 Low Temperature Steel Pipe

ASTM A333 Grade 8 is a low-temperature carbon steel pipe specification that allows for cold temperature service down to -195°C (-320°F).

Download PDF

According to ASTM A333 Grade 8 has a material composition that includes carbon, manganese, phosphorus, sulfur, silicon, nickel, chromium, and molybdenum, among others. When Grade 8 is ordered under this specification, a higher level of nickel and chromium must be added to the standard 9% nickel and 1% chromium for improved corrosion resistance. The grade also requires stress relief annealing at temperatures between 1025-1085°F (550-585°C) for a minimum of 2 hours for thicknesses up to 1.0 inch (25.4mm), plus an additional hour for each additional inch.

ASTM A333 Grade 8 is commonly used in industries such as power generation, petrochemical, refineries, and other process piping applications where low-temperature service and resistance to corrosion are necessary.

As the results of the experimental data, our factory successfully completed the grade of steel for Gr8 specifications for cryogenic Φ 355.6 x 50.8 mm pipe heat treatment.

The test results of tensile, impact work, hardness and flattening all meet the requirements of ASTM A333.

The Gr8(commonly known as 9%Ni) steel pipe is mainly used for the storage and transportation of liquefied natural gas, and is one of the most technologically advanced, difficult and value-added products in civil steel products.Because of its flammability and ultra-low temperature, the ultra-low temperature steel used for storage and transportation of liquefied natural gas must have the comprehensive characteristics of strength, thermal stress and strain, welding performance and corrosion resistance.Therefore, whether such products can be produced is an important symbol representing the overall technical level of a steel enterprise.The successful production of Gr8 cryogenic tube effectively expands the variety range of 720 units and lays a foundation for further development of the market.

ASTM A333 Grade 8 seamless pipe

A333 Gr8 cryogenic pipe is a brand in American ASTM standard, which is mainly used for storage and transportation of liquefied natural gas. It is one of the products with the highest technical level, difficulty and added value in civil steel products.Whether this kind of products can be produced successfully represents the overall technical level of an enterprise.In order to ensure this kind of steel pipe material requirement, valingheng steel has designed the steelmaking and smelting process in its own innovation.The test results of the steel pipe developed and produced show that the performance data of the steel pipe obtained by the heat treatment process are up to standard.

The Grade 8 steel involved is similar to AISI 4032 low alloy steel. ASTM A333 Grade 8 pipe shall be made by the seamless or welding process with the addition of no filler metal in the welding operation.

ASTM A333 Gr.8 is a kind of low carbon quenched and tempered steel. Gr.8 contains 9% of nickel, which is the most effective elements added to improve the steel's toughness at low temperature, to ensure its good toughness and high strength at low temperature down to - 195 ℃. Grade 8 low temperature steel pipe is mainly used in the manufacture of ethylene, propylene, urea, ammonia and compound fertilizer handling equipment or process equipment washing, purification, desulphurisation in pharmaceutical industry, degreasing and cryogenic equipment manufacturing, ultra-low temperature cold storage, transmission of liquefied gas pipe and tube components, such as liquefied petroleum gas (LPG) cryogenic separation equipment, air separation equipment, etc.

Raw material

ASTM A333 Grade 8 Low Temperature Steel Pipe is a type of seamless or welded steel pipe specifically designed for low-temperature service.

Raw material
Raw material

Size inspection

ASTM A333 Grade 6 Seamless Pipe
ASTM A333 Grade 6 Seamless Pipe
ASTM A333 Grade 6 Seamless Pipe
ASTM A333 Grade 6 Seamless Pipe
ASTM A333 Grade 6 Seamless Pipe
ASTM A333 Grade 6 Seamless Pipe
ASTM A333 Grade 6 Seamless Pipe
ASTM A333 Grade 6 Seamless Pipe
ASTM A333 Grade 6 Seamless Pipe

ASTM A333 Grade 8 is the part of standard covers wall seamless and welded carbon and alloy steel pipe intended for use at low temperatures. ASTM A333 Grade 8 alloy pipe shall be made by the seamless or welding process with the addition of no filler metal in the welding operation.

Seamless and Welded Steel Pipe size for Low-Temperature Service

Chemical Compositions(%) of ASTM A333 Grade 8

ASTM A333 Grade 8 Low Temperature Steel Pipe is made from carbon and alloy steel. It is designed to withstand low temperatures and has specific chemical composition requirements.

Compositions Data
Carbon(max.) 0.13
Manganese 0.90 max
Phosphorus(max.) 0.025
Sulfur(max.) 0.025
Silicon 0.13-0.32
Nickel 8.40-9.60
Chromium
Other Elements

Mechanical properties of ASTM A333 Grade 8

Properties PSI (Longitudinal) MPa(Transverse)
Tensile strength, min, (MPa) 100 000 690
Yield strength, min, (MPa) 75 000 515
Basic minimum elongation for walls 5/16 in. [8mm] and over in thickness, strip tests, and for all small sizes tested in full section. 22 --
When standard round 2-in, or 50-mm gage length or proportionally smaller size test specimen with the gage length equal to 4D (4 times the diameter) is used 16 --
For strip tests, a deduction for each 1/32 in [0.8 mm] decrease in wall thickness below 5/16 in [8 mm] from the basic minimum elongation of the following percentage 1.25 --

Gr. 8 contains 9% of Nickel, that is the most effective elements added to improve the steel toughness at low temperature to ensure its good toughness and high strength at low temperature down to - 195 ℃. Low temperature steel tube grade 8 is mainly used to produce device handling ethylene, propylene, urea, ammonia and compound fertilizer or process equipment washing, purification, desulfurization in pharmaceutical industry, degreasing and cryogenic equipment manufacturing, ultra-low temperature cold storage, transmission of liquefied gas pipe and tube components, such as liquefied petroleum gas (LPG) cryogenic separation equipment, air separation equipment, etc.

application

Application

Alloy steel pipes are ideally suitable for chemical, petrochemicals, and other energy-related applications.

The alloy steel pipe adopts high quality carbon steel, alloy structural steel and stainless & heat resisting steel as raw material through hot rolling or cold drawn to be made.

Alloy steel can be used in process area where carbon steel has limitation such as

As an important element of steel products, alloy steel pipe can be divided into seamless steel pipe and welded steel pipe according to the manufacturing technique and tube billet shape.

Here you can see the common alloy steel grade that you will come across.

Why the application of alloy steel pipe is wider than others

There are many kinds of materials used for transport in industrial production. Specifically we will have more choices and it is not limited to the use of alloy steel pipe. But even in the face of more choices, many people tend to choose alloy steel pipe. People make their own choices will have their own reasons. This means the alloy steel pipe application has its own advantages. Compared with transmission lines made of other materials, after it meets the basic application requirements, its quantity is lighter. Then in the practical application of alloy steel pipe, it will have more advantages because of this. Besides its physical characteristic advantage, it also has economic advantages. The wide application of alloy steel pipe is with kinds of reasons. So in practical usage, we can exploit the advantages to the full, in this way can we get more profits in these applications of alloy steel pipe.

What requirements should alloy steel pipe application meet

The transportation of kinds of gases or liquids in production needs to rely on alloy steel pipe. This shows that the actual role of alloy steel pipe application is important. High temperature resistant and low temperature resistant is the tolerance of temperature. In the practical application of alloy steel pipe, there will be many materials need to be transported. However their temperatures are not the same. So this can be the basic requirement to alloy steel pipe. It needs more corrosion resistance. Corrosion resistant material is the best material during transporting, because it is corrosion resistant. So it can be used in more occasions. And it is definitely very convenient for users.

The biggest advantages of alloy steel pipe

Can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy steel pipe total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy steel pipe to provide a wider space for the development of the industry. The future needs of the average annual growth of China’s high-pressure alloy steel pipe long products up to 10-12%.

Specification, standard and identification of alloy steel pipes

Alloy Steel pipe contains substantial quantities of elements other than carbon such as nickel, chromium, silicon, manganese, tungsten, molybdenum, vanadium and limited amounts of other commonly accepted elements such as manganese, sulfur, silicon, and phosphorous.

Industries We Serve

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The biggest advantages of alloy steel pipe can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy tube total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy tube to provide a wider space for the development of the industry. According to the Chinese Special Steel Association alloy pipe Branch Expert Group, the future needs of the average annual growth of China’s high-pressure alloy pipe long products up to 10-12%.

Inspection

Chemical composition inspection, mechanical properties test(tensile strength,yield strength, elongation, flaring, flattening, bending, hardness, impact test), surface and dimension test,no-destructive test, hydrostatic test.

PMI

identification of the chemical composition of the metal used to manufacture the fitting. Uses PMI sensors, including X-ray fluorescence or optical emission spectrometry.

PMI
PMI
PMI
PMI
PMI
PMI

Size measurement

Size measurement
Size measurement
Size measurement
Size measurement
Size measurement

Seamless pipes with compound bevels as per ASME B16-25 And ASTM A333

ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe

Delivery

Steel pipe delivery status(condition)

Steel pipe delivery status(condition): cold / hard (BK), cold / soft (BKW), after cold stress relief annealing (BKS), annealing (GBK), normalized (NBK).

Condition on delivery of steel pipe

Term Symbol Explanation
Cold-finished/hard (cold-finished as-drawn) BK No heat treatment after the last cold-forming process. The tubes therefore have only low deformability.
Cold-finished/soft (lightly cold-worked) BKW After the last heat treatment there is a light finishing pass (cold drawing) With proper subsequent processing, the tube can be cold-formed (e.g. bent, expanded) within certain limits.
Annealed GBK After the final cold-forming process the tubes are annealed in a controlled atmosphere or under vacuum.
Normalized NBK The tubes are annealed above the upper transformation point in a controlled atmosphere or under vacuum.

The general cold strip mills, volume should go through continuous annealing (CAPL unit) to eliminate cold hardening and rolling stress, or batch annealing reach the mechanical properties of the corresponding standard specifies. Cold rolled steel surface quality, appearance, dimensional accuracy better than hot-rolled plate, and right-rolled thin product thickness is about 0.18mm, so the majority of users favor.

Steel strips bunding for fixed pipes

Cold rolled steel coil substrate products deep processing of high value-added products. Such as electro-galvanized, hot dip galvanized, electro-galvanized fingerprint resistant, painted steel roll damping composite steel, PVC laminating steel plates, etc., so that the excellent quality of these products has a beautiful, high resistance to corrosion, has been widely used.

Cold rolled steel coil finishing after annealing, cut the head, tail, trimming, flattening, smooth, heavy volume, or longitudinal clipboard. Cold-rolled products are widely used in automobile manufacturing, household electrical appliances, instruments, switches, buildings, office furniture and other industries. Steel plate strapping package weight of 3 to 5 tons. Flat sub-volume typically 3 to 10 tons / volume. Coil diameter 6m.

Packing

Bare packing/bundle packing/crate packing/wooden protection at the both sides of tubes and suitably protected for sea-worthly delivery or as requested.

Packing
Packing
Packing
Packing
Packing
Packing

Placing steel pipes into containers

Packing
Packing
Packing
Packing
Packing
Packing

There are probably hundreds of different methods for packing a pipe, and most of them have merit, but there are two principles that are vital for any method to work prevent rusting and Sea transportation security.

Our packing can meet any needs of the customers.

FAQ FAQ

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The most important and desired changes in alloy steel are

Alloy steels are made by combining carbon steel with one or several alloying elements, such as manganese, silicon, nickel, titanium, copper, chromium and aluminum. These metals are added to produce specific properties that are not found in regular carbon steel. The elements are added in varying proportions (or combinations) making the material take on different aspects such as increased hardness, increased corrosion resistance, increased strength, improved formability (ductility); the weldability can also change.

Alloying Elements & Their Effects

Pipes, Tubes and Hollow Sections

Norms

Grade

Mechanical requirements of ASTM A333 alloy pipe

Grade Tensile Strength (MPa) Yield Point (MPa) Elongation (%)
Y X
ASTM A333 Grade 1 ≥380 ≥205 ≥35 ≥25
ASTM A333 Grade 3 ≥450 ≥240 ≥30 ≥20
ASTM A333 Grade 4 ≥415 ≥240 ≥30 ≥16.5
ASTM A333 Grade 6 ≥415 ≥240 ≥30 ≥16.5
ASTM A333 Grade 7 ≥450 ≥240 ≥30 ≥22
ASTM A333 Gr. 8 ≥690 ≥515 ≥22
ASTM A333 Grade 9 ≥435 ≥315 ≥28
ASTM A333 Grade 10 ≥550 ≥450 ≥22
ASTM A333 Grade 11 ≥450 ≥240 ≥18

*The elongation values are furnished on the basis of standard round 2 inch or 50 mm(or 4D) specimens.

*Elongation of Grade 11 is for all walls and small sizes tested in full section.

Chemical composition of ASTM A333 alloy pipe

Grade Chemical Composition (%)
C Si Mn P S Cr Ni Cu Mo V Al
Grade 1 ≤0.30 0.40-1.06 ≤0.025 ≤0.025
Grade 3 ≤0.19 0.18-0.37 0.31-0.64 ≤0.025 ≤0.025 3.18-3.82
Grade 4 ≤0.12 0.18-0.37 0.50-1.05 ≤0.025 ≤0.025 0.44-1.01 0.47-0.98 0.40-0.75 0.04-0.30
Grade 6 ≤0.30 ≥0.10 0.29-1.06 ≤0.025 ≤0.025
Grade 7 ≤0.19 0.13-0.32 ≤0.90 ≤0.025 ≤0.025 2.03-2.57
Grade 8 ≤0.13 0.13-0.32 ≤0.90 ≤0.025 ≤0.025 8.40-9.60
Grade 9 ≤0.20 0.40-1.06 ≤0.025 ≤0.025 1.60-2.24 0.75-1.25
Grade 10 ≤0.20 0.10-0.35 1.15-1.50 ≤0.03 ≤0.015 ≤0.15 ≤0.25 ≤0.015 ≤0.50 ≤0.12 ≤0.06
Grade 11 ≤0.10 ≤0.35 ≤0.6 ≤0.025 ≤0.025 ≤0.50 35.0-37.0 ≤0.50

*For Grade 1 and 6, each reduction of 0.01% C below 0.30%, an increase of 0.05 % Mn above 1.06 % would be permitted to a max. of 1.35%.

*For Grade 6, the limit for columbium may be increased up to 0.05 % on heat analysis and 0.06 % on product analysis.

*Generally, the carbon equivalent C.E = [C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15] shall not exceed 0.43% by heat analysis.

Production specification range of low temperature pipe products

No. Order No. Size description
O.D. /mm W.T. /mm Legnth /m
1 A333 Gr.6 A333 Gr.6/X42NS 10-127 1-20 6-12.0
42-114.3 3.5-6 6-12.2
42-114.3 6-12 6-12.2
114.3-180 3.8-8 6-12.2
114.3-180 8-22 6-12.2
68-180 10-14 6-12.2
69-254 14-55 6-12.2
140-340 6-8 6-12.2
140-368 8-42 6-12.2
318-720 14-50 4-12.5
2 A333 Gr.6/X52QS 42-114.3 3.5-12 6-12.2
114.3-180 3.8-22 6-12.2
68-254 10-40 6-12.2
140-368 6-40 6-12.2
318-720 14-40 4-12.5
140-368 6-25 6-12.2
318-720 14-25 4-12.5
3 16MnDG 10-127 1-20 6-12.0
42-114.3 3.5-12 6-12.2
114.3-180 3.8-22 6-12.2
68-254 10-55 6-12.2
140-368 6-42 6-12.2
318-720 14-120 4-12.5

Strike temperature condition

Crade The lowest temperature for strike test
ASTM A333 Grade 1 -50 -45
ASTM A333 Grade 3 -150 -100
ASTM A333 Grade 4 -150 -100
ASTM A333 Grade 6 -50 -45
ASTM A333 Grade 7 -100 -75
ASTM A333 Grade 8 -320 -195
ASTM A333 Grade 9 -100 -75
ASTM A333 Grade 10 -75 -60

Alloying Elements

Commonly used alloying elements and their effects are listed in the table given below.

Alloying Elements Effect on the Properties
Chromium Increases Resistance to corrosion   and oxidation. Increases hardenability and wear resistance. Increases high   temperature strength.
Nickel Increases hardenability. Improves   toughness. Increases impact strength at low temperatures.
Molybdenum Increases hardenability, high   temperature hardness, and wear resistance. Enhances the effects of other   alloying elements. Eliminate temper brittleness in steels. Increases high   temperature strength.
Manganese Increases hardenability. Combines   with sulfur to reduce its adverse effects.
Vanadium Increases hardenability, high   temperature hardness, and wear resistance. Improves fatigue resistance.
Titanium Strongest carbide former. Added to   stainless steel to prevent precipitation of chromium carbide.
Silicon Removes oxygen in steel making.   Improves toughness. Increases hardness ability
Boron Increases hardenability. Produces   fine grain size.
Aluminum Forms nitride in nitriding steels.   Produces fine grain size in casting. Removes oxygen in steel melting.
Cobalt Increases heat and wear   resistance.
Tungsten Increases hardness at elevated   temperatures. Refines grain size.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.