ASTM A53 Steel Pipe
ASTM A53 steel pipes are widely used for various industrial applications due to their strength and durability.
ASTM A334 Gr.6 seamless steel tubes are low temperature carbon steel tubes that are used for transporting fluids at low temperatures.
Download PDFASTM A334 Gr.6 seamless steel tubes are suitable for use in boilers, pressure vessels, and heat exchangers. They are manufactured using high-quality carbon steel and are designed to withstand low temperatures and high pressure. These tubes have excellent dimensional accuracy and are available in different sizes and thicknesses to meet the specific requirements of different applications. ASTM A334 Gr.6 seamless steel tubes have good welding properties and can be welded easily without any distortion or cracking.
1.1 This specification2 covers several grades of minimum-wall-thickness, seamless and welded, carbon and alloy-steel tubes intended for use at low temperatures. Some product sizes may not be available under this specification because heavier wall thicknesses have an adverse affect on low-temperature impact properties.
1.2 Supplementary Requirement S1 of an optional nature is provided. This shall apply only when specified by the purchaser.
NOTE 1: For tubing smaller than 1/2 in. [12.7 mm] in outside diameter, the elongation values given for strip specimens in Table 1 shall apply. Mechanical property requirements do not apply to tubing smaller than 1/8 in. [3.2 mm] in outside diameter and with a wall thickness under 0.015 in. [0.4 mm].
1.3 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification. The inch-pound units shall apply unless the “M” designation of this specification is specified in the order.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ASTM A333 Grade 6 pipe is equivalent to several international standards including EN/DIN 10216-2, BS 3059 Part 2, and ASME SA-106.
Standard | Grade | Chemical Components (%) | |||||
C | Si | Mn | P | S | Ni | ||
ASTM A334/ ASME SA334 | GR.6 | ≤0.30 | ≥0.10 | 0.29-1.06 | ≤0.025 | ≤0.025 | / |
Standard | Grade | Mechanical Properties | |||
Tensile | Yield | Elongation | The Low degree of Temperature test | ||
Strength (Mpa) | Strength (Mpa) | (%) | |||
ASTM A334/ ASME SA334 | Gr.6 | ≥415 | ≥240 | ≥30 | -45° |
Grade | Rockwell | Brinell |
ASTM A334 Grade 6 | B90 | 190 |
Size of Specimen, mm | Minimum Average Notched Bar Impact Value of. Each Set of Three Specimens | Minimum Notched Bar Impact Value of One Specimen Only of a Set | ||
ft·lbf | J | ft·lbf | J | |
10 by 10 | 13 | 18 | 10 | 14 |
10 by 7.5 | 10 | 14 | 8 | 11 |
10 by 6.67 | 9 | 12 | 7 | 9 |
10 by 5 | 7 | 9 | 5 | 7 |
10 by 3.33 | 5 | 7 | 3 | 4 |
10 by 2.5 | 4 | 5 | 3 | 4 |
Specimen Width Along Notch or Accrual Material Thickness | Temperature Reduction, Degrees Colder | ||
In. | mm | ℉ | ℃ |
0.394 | 10(Standard size) | 0 | 0 |
0.354 | 9 | 0 | 0 |
0.315 | 8 | 0 | 0 |
0.295 | 7.5(3/4 std. size) | 5 | 3 |
0.276 | 7 | 8 | 4 |
0.262 | 6.67(2/3 std. sze) | 10 | 5 |
0.236 | 6 | 15 | 8 |
0.197 | 5(1/2 std. size) | 20 | 11 |
0.158 | 4 | 30 | 17 |
0.131 | 3.33(1/3 std. size) | 35 | 19 |
0.118 | 3 | 40 | 22 |
0.099 | 2.5(1/4 std. size) | 50 | 28 |
l Flattening Test One flattening test shall be made on specimens from each end of one finished tube of each lot.
l Flare Test (Seamless Tubes) One flare test shall be made on specimens from each end of one finished tube of each lot.
l Flange Test (Welded Tubes) One flange test shall be made on specimens from each end of one finished tube of each lot.
l Reverse Flattening Test For welded tubes, one re- verse flattening test shall be made on a specimen from each 1500 ft [460 m] of finished tubing.
l Hardness Test Brinell or Rockwell hardness tests shall be made on specimens from two tubes from each lot (Note 3).
l Impact Tests One notched-bar impact test, consisting of breaking three specimens, shall be made from each heat represented in a heat-treatment load on specimens taken from the finished tube.
ASTM A334 / ASME SA334 GR.6 tubes Hydrostatic or NDT test
Each A334 GR.6 tube shall be subjected to the nondestructive electric test or the hydrostatic test. The type of test to be used shall be at the option of the manufacturer, unless otherwise specified in the purchase order.
All A334 GR.6 seamless and welded tubes, other than Grades 8 and 11, shall be treated to control their microstructure in Accor- dance with one of the following methods:
ASTM ASME A/SA334 GR.6 Seamless Tubes Orders for material under this specification should include the following, as required, to describe the material adequately: