Lateral Tee: Enhancing Fluid Flow Control and Distribution

A Lateral pipe tee means a pipe fitting which is similar to a tee but has a side opening outlet branch at a 45 degree angle.

Lateral Tee

What is lateral tee?

A lateral tee is a specialized type of pipe fitting that features a T-shaped design, with an additional outlet at a 90-degree angle from the main pipeline. This unique configuration allows for the diversion of fluid flow from the main line to the lateral line, enabling efficient distribution to various destinations.

A lateral tee is a type of pipe fitting that is used to connect a branch line at right angles to a pipeline. It has a straight section of pipe, known as the "run," with a branch off of it at a 90-degree angle, called the "lateral." The lateral can be equal or unequal in size compared to the run.

Lateral tees are commonly used in piping systems where a new branch line needs to be added perpendicular to an existing pipeline. They are available in different materials such as carbon steel, stainless steel, alloy steel, and other metals, depending on the application.

There are two types of lateral tees: equal lateral tee and reducing lateral tee.

An equal lateral tee has branches of the same size, which means that the fluid flowing through the pipeline will be divided equally into the branch line.

A reducing lateral tee, on the other hand, has a smaller branch than the main pipeline. It is used when the flow rates in the branch line need to be reduced compared to the main pipeline.

Benefits of using lateral tees include:

In conclusion, lateral tees are essential pipe fittings that allow for the connection of a branch line at a right angle to a pipeline. They come in different materials, sizes, and configurations to meet various piping requirements.

Features and Benefits

The lateral tee offers a range of features that contribute to its significance in fluid control systems:

  1. Versatility: Lateral tees can be utilized in various applications, including industrial processes, plumbing systems, and irrigation networks.

  2. Fluid Distribution: The additional outlet in the lateral tee enables fluid to be directed to multiple locations, enhancing distribution and facilitating controlled flow rates.

  3. Branch Connections: Lateral tees provide a reliable way to create branch connections within a pipeline, enabling the addition of new lines without disrupting the main flow.

Applications of Lateral Tees

Lateral tees find extensive use in several industries and applications:

  1. Industrial Processes: In industries such as chemical, petrochemical, and manufacturing, lateral tees aid in directing different types of fluids to various stages of production.

  2. Plumbing Systems: Lateral tees are integral to plumbing networks, ensuring the efficient distribution of water in commercial and residential buildings.

  3. Agriculture: In irrigation systems, lateral tees play a crucial role in delivering water to different sections of fields, optimizing crop growth.

Advantages of Using Lateral Tees

  1. Flow Control: Lateral tees enable precise control of fluid flow, ensuring that liquids are distributed accurately to specific points.

  2. Reduced Pressure Drop: Properly designed lateral tees minimize pressure drop, maintaining consistent flow rates throughout the pipeline.

  3. Space Efficiency: The compact design of lateral tees allows for efficient use of space, making them suitable for installations with space constraints.

Considerations for Installation

When incorporating lateral tees into fluid systems, certain considerations are essential:

  1. Material Selection: Choose materials that are compatible with the fluid being transported to prevent corrosion or contamination.

  2. Orientation: Proper orientation of the lateral tee is crucial to ensure effective fluid diversion and distribution.

The lateral tee stands as a critical component in fluid control systems, offering the capability to direct and distribute fluids efficiently to various destinations. Its versatile design, advantageous features, and wide-ranging applications make it indispensable across industries. Whether in industrial processes, plumbing systems, or agricultural setups, the lateral tee plays a vital role in ensuring the smooth and controlled flow of fluids, enhancing overall system performance and reliability.

What are the different types of lateral tee?

Stainless 304 Lateral tee
Lateral tee
Carbon steel Lateral tee
Stainless 304 Lateral tee
Stainless 304 Lateral tee
Stainless 304 Lateral tee

Lateral tees, also known as lateral branch tees, are specialized pipe fittings used to create branching connections at a 45-degree angle from the main pipe. These fittings allow for fluid or gas diversion without disrupting the main flow. There are several types of lateral tees, each designed to cater to specific piping system requirements:

  1. Standard Lateral Tee: This is the most common type of lateral tee, featuring a 45-degree branch outlet. It diverts flow while maintaining the same diameter for both the main and lateral pipes.

  2. Reducing Lateral Tee: Similar to a standard lateral tee, but with a smaller diameter for the lateral branch outlet. It's used when the diverted flow needs to transition to a smaller pipe size.

  3. Equal Lateral Tee: In this tee, the lateral branch has the same diameter as the main pipe. It ensures equal flow distribution between the main and lateral lines.

  4. Unequal Lateral Tee: Here, the lateral branch has a different diameter from the main pipe, allowing for varied flow rates between the two sections.

  5. Lateral Tee with Reinforced Branch: This type has a reinforced lateral branch, often used for high-pressure applications or when the diverted flow requires additional support.

  6. Lateral Tee with Flanges: This design incorporates flanges on the lateral outlet for easier connection to other pipes or equipment.

  7. Barred Lateral Tee: It features a bar across the lateral outlet, acting as a flow control device to prevent excessive flow through the lateral line.

  8. Weldolet Lateral Tee: A combination of a lateral tee and a weldolet, providing a weldable outlet for the lateral branch.

  9. Threadolet Lateral Tee: Similar to the weldolet lateral tee but designed with threads on the lateral branch outlet for threaded connections.

Material of lateral tee

Lateral tees are available in a variety of materials, including:

The choice of material for a lateral tee depends on various factors, including the application, the type of fluid being transported, the temperature and pressure of the system, and the required level of corrosion resistance.

In conclusion, lateral tees are available in different materials based on their properties and suitability for various applications. Carbon steel, stainless steel, alloy steel, PVC, and copper are some of the common materials used for lateral tees in piping systems. The selection of a suitable material depends on the specific requirements of the application.

A Lateral pipe tee means a pipe fitting which is similar to a tee but has a side opening outlet branch at a 45 degree angle.

Lateral tee has a 45 degree branch from a pipeline.

It is a kind of steel pipe tee,but the branch direction is different with the straight tee.On the contrary to the lateral tee,the straight tee has a branch pipe direction of 90 degree to the run pipe.

The WYE have two branch pipes at a 45 degree angle between them,and the two branch pipes are symmetrical to the centerline of the inflow pipe which means the two outflow direction are both at 22.5 degree to the inflow direction.

What is the difference between lateral tee and True WYE

Tee or Tee connection in piping engineering is a very important pipe fitting and is frequently used to combine or divide a flow. Two types of Tee are available, Equal Tee and Reducing Tee. However, in pigged pipelines, one special type of tee connection is widely used which is known as Barred Tee or Pigged Tee.

We are manufacturer of Lateral Wye, Lateral Tee, true WYE and supply high quality Lateral Wye, Lateral Tee, true WYE in both large and small quantities worldwide & offer you the best prices in the market.

We should analyze this from their shapes:the lateral tee divide two branch pipes:one is same direction with the inflow pipe,the other have a 45 degree angle to inflow pipe. The WYE have two branch pipes at a 45 degree angle between them,and the two branch pipes are symmetrical to the centerline of the inflow pipe which means the two outflow direction are both at 22.5 degree to the inflow direction.

Comparing the two lateral pipe fittings,when the inflow pipe direction is horizontal to the ground,we can choose the lateral tee for better support from ground,and when the inflow pipe direction is vertical,then we’d better use the WYE fitting,it will bring a symmetrical interaction force to the piping system. Such designing will make sure the pipe in a stable support when running.

Lateral size:
The latrolet (Lateral Outlet) is one kind of tee fittings,which has a 45 degree branch from a pipeline.

We have a team of experienced professionals with years of experience in manufacturing. Lateral tees are pipe fittings with two outlets, one at 90 ° to the connection to the main line that has tiny holes. Lateral tees can either be extruded or fabricated and are used to connect two pieces of pipe or fittings. Lateral tees are used in pipelines that are pigged.

What is the difference between a tee and a lateral tee?

Tees and lateral tees are essential pipe fittings used in various piping systems to create branching connections. Despite sharing the common purpose of diverting flow, they possess distinct configurations and applications that set them apart.

A tee is a fitting with a T-shaped cross-section, resembling the letter "T." It features one main inlet and two outlets perpendicular to the main pipe. Tees are versatile and widely used to split fluid or gas flow into two directions, accommodating equal or different-sized outlets. They find application in scenarios where a straightforward perpendicular branching is required, such as distribution networks, plumbing, and industrial processes. Tees are chosen for their simplicity and efficiency in directing the flow evenly.

On the other hand, a lateral tee, also known as a lateral branch or lateral outlet, introduces an innovative approach to branching. It maintains the T-shaped structure but incorporates an outlet positioned at a 45-degree angle to the main pipe. This lateral angle allows for flow diversion to the side rather than directly perpendicular. Lateral tees are preferred in situations where spatial constraints or gradual flow redirection is crucial. Their unique design enables smooth and controlled distribution of fluids or gases. Industries with limited space, intricate piping layouts, or requirements for minimizing abrupt changes in flow direction often opt for lateral tees.

What is a lateral reducing tee?

Reducing lateral tee is one quite tee pipe fittings, that includes a forty-five-degree branch from a pipeline: (45° reducing lateral tee). It's a type of steel pipe tee, however, the branch direction is completely different from the straight tee.

Similar to a lateral tee, the lateral reducing tee maintains a T-shaped configuration, with a main inlet and a lateral outlet positioned at a 45-degree angle to the main pipe. However, what sets it apart is its ability to handle pipes of different diameters. The lateral reducing tee has an additional branch outlet with a smaller diameter, allowing for a reduction in pipe size while diverting the flow.

This type of tee is particularly useful in scenarios where the flow needs to be redirected at an angle while also transitioning to a smaller pipe size. It finds application in industries and systems where fluid or gas distribution requires changes in pipe diameter along with lateral branching. The lateral reducing tee facilitates a smooth transition between pipes of varying sizes while efficiently controlling the flow direction.

What is lateral tee in piping?

Lateral tees are pipe fittings with two outlets, one at 90 degree to the connection to the main line that has tiny holes. Lateral tees can either be extruded or fabricated and are used to connect two pieces of pipe or fittings. Lateral tees are used in pipelines that are pigged.

Types of Lateral Tee Fitting

Where are lateral tees commonly used?

Lateral tees find application in industries such as manufacturing, petrochemicals, plumbing systems, and agriculture, where fluid distribution is essential.

What advantages do lateral tees offer?

Lateral tees provide advantages such as versatile applications, controlled fluid distribution, reduced pressure drop, and space efficiency in fluid systems.


Standard

Pipe fitting dimensions are in either metric or Standard English.

Because pipe fitting covers Pipe Fitting Dimensions several aspects, only the most common pipe fitting sizes can be given here. The most applied version is the 90° long radius and the 45° elbow, while the 90° short radius elbow is applied if there is too little space. The function of a 180° elbow is to change direction of flow through 180°. Both, the LR and the SR types have a center to center dimension double the matching 90° elbows. These fittings will generally be used in furnesses or other heating or cooling units.

Some of the standards that apply to buttwelded fittings are listed below. Many organizations such as ASME, ASTM, ISO, MSS, etc. have very well developed standards and specifications for buttwelded fittings. It is always up to the designer to ensure that they are following the applicable standard and company specification, if available, during the design process.

Some widely used pipe fitting standards are as follows:

ASME: American Society for Mechanical Engineers
This is one of the reputed organizations in the world developing codes and standards.
The schedule number for pipe fitting starts from ASME/ANSI B16. The various classifications of ASME/ANSI B16 standards for different pipe fittings are as follows:

ASTM International: American Society for Testing and Materials
This is one of the largest voluntary standards development organizations in the world. It was originally known as the American Society for Testing and Materials (ASTM).

AWWA: American Water Works Association

AWWA About – Established in 1881, the American Water Works Association is the largest nonprofit, scientific and educational association dedicated to managing and treating water, the world’s most important resource.

ANSI: The American National Standards Institute

ANSI is a private, non-profit organization. Its main function is to administer and coordinate the U.S. voluntary standardization and conformity assessment system. It provides a forum for development of American national standards. ANSI assigns “schedule numbers”. These numbers classify wall thicknesses for different pressure uses.

MSS STANDARDS: Manufacturers Standardization Society
The Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry is a non-profit technical association organized for development and improvement of industry, national and international codes and standards for: Valves, Valve Actuators, Valve Modification, Pipe Fittings, Pipe Hangers, Pipe Supports, Flanges and Associated Seals

Difference between “Standard” and “Codes”:

Piping codes imply the requirements of design, fabrication, use of materials, tests and inspection of various pipe and piping system. It has a limited jurisdiction defined by the code. On the other hand, piping standards imply application design and construction rules and requirements for pipe fittings like adapters, flanges, sleeves, elbows, union, tees, valves etc. Like a code, it also has a limited scope defined by the standard.

Factors affecting standards: “Standards” on pipe fittings are based on certain factors like as follows:

BSP: British Standard Pipe

BSP is the U.K. standard for pipe fittings. This refers to a family of standard screw thread types for interconnecting and sealing pipe ends by mating an external (male) with an internal (female) thread. This has been adopted internationally. It is also known as British Standard Pipe Taper threads (BSPT )or British Standard Pipe Parallel (Straight) threads (BSPP ). While the BSPT achieves pressure tight joints by the threads alone, the BSPP requires a sealing ring.

JIS: Japanese Industrial Standards

This is the Japanese industrial standards or the standards used for industrial activities in Japan for pipe, tube and fittings and published through Japanese Standards Associations.

NPT: National Pipe Thread

National Pipe Thread is a U.S. standard straight (NPS) threads or for tapered (NPT) threads. This is the most popular US standard for pipe fittings. NPT fittings are based on the internal diameter (ID) of the pipe fitting.

BOLTS & NUTS

We are manufacturer of Flange bolts & Nuts and supply high quality

AN: Here, “A” stands for Army and “N” stands for Navy

The AN standard was originally designed for the U.S. Military. Whenever, a pipe fitting is AN fittings, it means that the fittings are measured on the outside diameter of the fittings, that is, in 1/16 inch increments.

For example, an AN 4 fitting means a fitting with an external diameter of approximately 4/16″ or ¼”. It is to be noted that approximation is important because AN external diameter is not a direct fit with an equivalent NPT thread.

Dash (-) size

Dash size is the standard used to refer to the inside diameter of a hose. This indicates the size by a two digit number which represents the relative ID in sixteenths of an inch. This is also used interchangeably with AN fittings. For example, a Dash “8” fitting means an AN 8 fitting.

ISO: International Organization for Standardization

ISO is the industrial pipe, tube and fittings standards and specifications from the International Organization for Standardization. ISO standards are numbered. They have format as follows:

“ISO[/IEC] [IS] nnnnn[:yyyy] Title” where

General standard

Standard Specification
ASTM A234 Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service
ASTM A420 Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Low-Temperature Service
ASTM A234 WPB ASTM A234 is Standard Specification for steel pipe fittings includes carbon and alloy steel material for moderate and high temperature services. WPB is one of the steel grade in this standard
ASME B16.9 ASME B16.9 Standard covers overall dimensions, tolerances,ratings, testing, and markings for factory-made wrought buttwelding fittings in sizes NPS 1⁄2 through NPS 48 (DN 15 through DN 1200).
ASME B16.28 ASME B16.28 Standard covers ratings, overall dimensions, testing, tolerances, and markings for wrought carbon and alloy steel buttwelding short radius elbows and returns.
MSS SP-97 MSS SP-97 Standard Practice covers essential dimensions, finish, tolerances, testing, marking, material, and minimum strength requirements for 90 degree integrally reinforced forged branch outlet fittings of buttwelding, socket welding, and threaded types.
ASTM A403 Standard Specification for Wrought Austenitic Stainless Steel Piping Fittings.

Wide variety for all areas of application

DIN EN ASME
St 35.8 I
St 35.8 III
15 Mo 3
13 CrMo 4 4
10 CrMo 9 10
St 35 N
St 52.0
St 52.4
P235GH-TC1
P235GH-TC2
16Mo3
13CrMo4-5
10CrMo9-10
X10CrMoVNb9-1
P215NL
P265NL
L360NB
L360NE
P355N
P355NL1
P355NH
WPB
WPL6
WPL3
WPHY 52
WP11
WP22
WP5
WP9
WP91
WP92
Download PDF

Chemical Composition (%) of ASTM A234/A234M

Grade Type C Si S P Mn Cr Ni Mo Other ób ós δ5
WPB 0.3 0.1min 0.058 0.05 0.29-1.06 0.4 0.4 0.15 V:0.06;Nb:0.02 415-585 240 22 197
WPC 0.35 0.1min 0.058 0.05 0.29-1.06 0.4 0.4 0.15 V:0.06;Nb:0.02 485-655 275 22 197
WP1 0.28 0.1-0.5 0.045 0.045 0.3-0.9 0.44-0.65 380-550 205 22 197
WP12 CL1 0.05-0.2 0.6 0.045 0.045 0.3-0.8 0.8-1.25 0.44-0.65 415-585 220 22 197
WP12 CL2 0.05-0.2 0.6 0.045 0.045 0.3-0.8 0.8-1.25 0.44-0.65 485-655 275 22 197
WP11 CL1 0.05-0.15 0.5-1 0.03 0.03 0.3-0.6 1-1.5 0.44-0.65 415-585 205 22 197
WP11 CL2 0.05-0.2 0.5-1 0.04 0.04 0.3-0.8 1-1.5 0.44-0.65 485-655 275 22 197
WP11 CL3 0.05-0.2 0.5-1 0.04 0.04 0.3-0.8 1-1.5 0.44-0.65 520-690 310 22 197
WP22 CL1 0.05-0.15 0.5 0.04 0.04 0.3-0.6 1.9-2.6 0.87-1.13 415-585 205 22 197
WP22 CL3 0.05-0.15 0.5 0.04 0.04 0.3-0.6 1.9-2.6 0.87-1.13 520-690 310 22 197
WP5 CL1 0.15 0.5 0.03 0.04 0.3-0.6 4-6 0.44-0.65 415-585 205 22 217
WP5 CL3 0.15 0.5 0.03 0.04 0.3-0.6 4-6 0.44-0.65 520-690 310 22 217
WP9 CL1 0.15 1 0.03 0.03 0.3-0.6 8-10 0.9-1.1 415-585 205 22 217
WP9 CL3 0.15 1 0.03 0.03 0.3-0.6 8-10 0.9-1.1 520-690 310 22 217
WPR 0.2 0.05 0.045 0.4-1.06 1.6-2.24 435-605 315 22/28 217
WP91 0.08-0.12 0.2-0.5 0.01 0.02 0.3-0.6 8-9.5 0.4 0.85-1.05 See sdandard 585-760 415 20 248
WP911 0.09-0.13 0.1-0.5 0.01 0.02 0.3-0.6 8.5-10.5 0.4 0.9-1.1 See sdandard 620-840 440 20 248

Notes:

For each reduction of 0.01% below the specified C maximum, an increase of 0.06% Mn above the specified maximum will be permitted, up to a maximum of 1.35%.

The sum of Cu, Ni, Cr, and Mo shall not exceed 1.00%.

The sum of Cr and Mo shall not exceed 0.32%.

The maximum carbon equivalent (C.E.) shall be 0.50, based on heat analysis and the formula C.E.=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15.

Mechanical properties of ASTM A234

Tensile Requirements WPB WPC, WP11CL2 WP11CL1  WP11CL3
Tensile Strength, min, ksi[MPa]
(0.2% offset or 0.5% extension-under-load)
60-85
[415-585]
70-95
[485-655]
60-85
[415-585]
 75-100
[520-690]
Yield Strength, min, ksi[MPa] 32
[240]
40
[275]
30
[205]
45
[310]

What is the ASTM A403?

ASTM A403 Stainless Steel Pipe Fittings refers to the material of forged and rolled austenitic stainless fittings for pressure pipes. Common grades are WP304/L, WP316/L. They can be used into many fields as engineering industry, energy conversion plants etc.

ASTM A403 Standard specification covers the standard for wrought austenitic stainless steel fittings for pressure piping applications.

ASTM A403/ WP304L Stainless Steel Pipe Elbow

ASTM A403 WP304L Stainless Steel Pipe Elbow

90 Degree A403 Stainless elbow

90 Degree A403 Stainless elbow

Chemical Composition (%) of ASTM A403

Steel No. Type C Si S P Mn Cr Ni Mo Other ób ós δ5
WP304 0.08 1 0.03 0.045 2 18-20 8-11 515 205 28
WP304H 0.04-0.1 1 0.03 0.045 2 18-20 8-11 515 205 28
WP304L 0.035 1 0.03 0.045 2 18-20 8-13 485 170 28
WP304LN 0.03 0.75 0.03 0.045 2 18-20 8-10.5 N2:0.1-0.16 515 205 28
WP304N 0.08 0.75 0.03 0.045 2 18-20 8-11 N2:0.1-0.16 550 240 28
WP309 0.15 1 0.03 0.045 2 22-24 12-15 515 205 28
WP310 0.15 1.5 0.03 0.045 2 24-26 19-22 515 205 28
WP316 0.08 1 0.03 0.045 2 16-18 10-14 2-3 515 205 28
WP316H 0.04-0.1 1 0.03 0.045 2 16-18 10-14 2-3 515 205 28
WP316LN 0.03 0.75 0.03 0.045 2 16-18 11-14 2-3 N2:0.1-0.16 515 205 28
WP316L 0.035 1 0.03 0.045 2 16-18 10-16 2-3 485 170 28
WP316N 0.08 0.75 0.03 0.045 2 16-18 11-14 2-3 N2:0.1-0.16 550 240 28
WP317 0.08 1 0.03 0.045 2 18-20 11-15 3-4 515 205 28
WP317L 0.03 1 0.03 0.045 2 18-20 11-15 3-4 515 205 28
WP321 0.08 1 0.03 0.045 2 17-20 9-13 Ti:5C-0.7 515 205 28
WP321H 0.04-0.1 1 0.03 0.045 2 17-20 9-13 Ti:4C-0.7 515 205 28
WP347 0.08 1 0.03 0.045 2 17-20 9-13 Nb+Ta:10C-1.1 515 205 28
WP347H 0.04-0.1 1 0.03 0.045 2 17-20 9-13 Nb+Ta:8C-1 515 205 28
WP348 0.08 1 0.03 0.045 2 17-20 9-13 Ta:0.1 515 205 28
WP348H 0.04-0.1 1 0.03 0.045 2 17-20 9-13 Ta:0.1 515 205 28

Notes:

For each reduction of 0.01% below the specified C maximum, an increase of 0.06% Mn above the specified maximum will be permitted, up to a maximum of 1.35%.

The sum of Cu, Ni, Cr, and Mo shall not exceed 1.00%.

The sum of Cr and Mo shall not exceed 0.32%.

The maximum carbon equivalent (C.E.) shall be 0.50, based on heat analysis and the formula C.E.=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15.

Mechanical properties of ASTM A403

Grade UNS Tensile Strength, min Yield Strength,min Elongation min % in 4D
ksi MPa ksi MPa Longit % Trans%
ALL ALL 75 515 30 205 28 20
304L S30403 70 485 25 170 28 20
316L S31603 70 485 25 170 28 20
304N S30451 80 550 35 240 28 20
316N S31651 80 550 35 240 28 20
S31726 80 550 35 240 28 20
XM-19 S20910 100 690 55 380 28 20
S31254 94-119 650-820 44 300 28 20
S34565 115 795 60 415 28 20
S33228 73 500 27 185 28 20

Material Furnished to this specification shall conform to the requirements of specifications A960/A960M including any supplementary requirements that are indicates in the purchase order. Failure to company with the common requirements of Specification A960/A960M constitutes non-conformance with this specification . In case of conflict between this specification and Specification A960/A960M , this specification shall prevail.

Material Furnished to this specification shall conform to the requirements of specifications A960/A960M including any supplementary requirements that are indicates in the purchase order. Failure to company with the common requirements of Specification A960/A960M constitutes non-conformance with this specification. In case of conflict between this specification and Specification A960/A960M , this specification shall prevail.

What grade of steel is ASTM A403?

The standard includes several grades of austenitic stainless steel alloys, and uses the WP or CR prefix to mark the grade of steel, depending on the applicable ASTM or MSS size and rated pressure standards. ASTM A403 is designed for forged steel pipe fittings, Cast pipe fittings are not suitable.

Chemical Composition (%) of ASTM A420

Elements WPL6, % WPL9, % WPL3, % WPL8, %
Carbon [C] ≤0.30 ≤0.20 ≤0.20 ≤0.13
Manganese [Mn] 0.50-1.35 0.40-1.06 0.31-0.64 ≤0.90
Phosphorus [P] ≤0.035 ≤0.030 ≤0.05 ≤0.030
Sulfur [S] ≤0.040 ≤0.030 ≤0.05 ≤0.030
Silicon [Si] 0.15-0.40 0.13-0.37 0.13-0.37
Nickel [Ni] ≤0.40 1.60-2.24 3.2-3.8 8.4-9.6
Chromium [Cr] ≤0.30 ... ... ...
Molybdenum [Mo] ≤0.12 ... ... ...
Copper [Cu] ≤0.40 0.75-1.25
Columbium [Cb] ≤0.02 ... ... ...
Vanadium[V] ≤0.08 ... ... ...

Notes:

*For grade WPL6, the limit for Columbium may be increased up to 0.05% on heat analysis and 0.06% on product analysis.

*Fittings of WPL3 made from plate or forgings may have 0.90 % max manganese.

*Fittings of WPL8 made from plate may have 0.98 % max manganese.

Mechanical properties of ASTM A420

ASTM A420/ A420M Tensile Strength, min. Yield Strength, min. Elongation %, min
Grade ksi MPa ksi MPa Longitudinal Transverse
WPL6 65-95 415-655 35 240 22 12
WPL9 63-88 435-610 46 315 20
WPL3 65-90 450-620 35 240 22 14
WPL8 100-125 690-865 75 515 16

*All the elongation values are on the basis of standard round specimen, or small proportional specimen, min % in 4 D.

ASTM A234 is Standard Specification for steel pipe fittings includes carbon and alloy steel material for moderate and high temperature services.

ASME B16.9 Standard covers overall dimensions, tolerances,ratings, testing, and markings for factory-made wrought buttwelding fittings in sizes NPS 1⁄2 through NPS 48 (DN 15 through DN 1200).

Download PDF

ASME / ANSI B16.9 dimension

Nominal Outside Diameter 90° Elbows 45° Elbows 180° Returns
Pipe Size
Long Radius Short Radius Long Radius Long Radius
(inches) (mm) (inches) Center to Face Center to Face Center to Face Radius Center to Center Back to face
(inches) (inches) (inches) (inches) (inches) (inches)
1/2 21.3 0.84 1.5 5/8 2 1.875
3/4 26.7 1.05 1.125 7/16 2.25 1.6875
1 33.4 1.315 1.5 1 7/8 3 2.1875
1.25 42.2 1.66 1.875 1.25 1 3.75 2.75
1.5 48.3 1.9 2.25 1.5 1.125 3 4.5 3.25
2 60.3 2.375 3 2 1.375 4 6 4.1875
2.5 73 2.875 3.75 2.5 1.75 5 7.5 5.1875
3 88.9 3.5 4.5 3 2 6 9 6.25
3.5 101.6 4 5.25 3.5 2.25 7 10.5 7.25
4 114.3 4.5 6 4 2.5 8 12 8.25
5 141.3 5.563 7.5 5 3.125 10 15 10.3125
6 168.3 6.625 9 6 3.75 12 18 12.3125
8 219.1 8.625 12 8 5 12 24 16.3125
10 273.1 10.75 15 10 6.25 15 30 20.375
12 323.9 12.75 18 12 7.5 18 36 24.375

Tolerances of Welded Fittings

NOMINAL PIPE SIZE NPS ANGULARITY TOLERANCES ANGULARITY TOLERANCES
Size Off Angle Q Off Plane P
½ to 4 0.03 0.06
5 to 8 0.06 0.12
10 to 12 0.09 0.19
14 to 16 0.09 0.25
18 to 24 0.12 0.38
26 to 30 0.19 0.38
32 to 42 0.19 0.5
44 to 48 0.18 0.75

All dimensions are given in inches. Tolerances are equal plus and minus except as noted.

  1. Out-of-round is the sum of absolute values of plus and minus tolerance.
  2. This tolerance may not apply in localized areas of formed fittings where increased wall thickness is required to meet design requirements of ASME B16.9.
  3. The inside diameter and the nominal wall thicknesses at ends are to be specified by the purchaser.
  4. Unless otherwise specified by the purchaser, these tolerances apply to the nominal inside diameter, which equals the difference between the nominal outside diameter and twice the nominal wall thickness.

The ASME B16.9 pipe fittings can be used under the jurisdiction of the ASME Boiler & Pressure Vessel Code (BPVC) as well as the ASME Code for pressure piping. Referencing pressure ratings of flanges per ASME B16.5, they can be designated as Classes 150, 300, 600, 900, 1500 and 2500. The allowable pressure ratings for ASME B16.9 pipe fittings may be calculated as for straight seamless pipe of equivalent material in accordance with the rules established in the applicable sections of ASME B31 Code for pressure piping.

Design of Fittings

The design of butt welding pipe fittings made to ASME B16.9 shall be established by one of the following methods: (a) mathematical analyses contained in pressure vessel or piping codes; (b) proof testing; (c) experimental stress analysis with hydrostatic testing to validate experimental results; (d) detailed stress analysis with results evaluation.

Standard Marking

Generally, ASME B16.9 pipe fittings shall be marked to show the following details: “trademark + material grade + wall thickness + size + heat number”. For example, “M ASTM A234 WP5 SCH80 6″ 385“. When steel stamps are used, care shall be taken so that
the marking is not deep enough or sharp enough to cause cracks or to reduce the wall thickness of the fitting below the minimum allowed.

Material & Manufacture

The ASME B16.9 fittings may be made from an extensive range of mateirals covering (1) carbon and low-alloy steels in accordance with ASTM A234 and ASTM A420; (2) austenitic and duplex stainless steels in accordance with ASTM A403 and ASTM A815; (3) nickel alloys in accordance with ASTM B366; (4) aluminum alloys in accordance with ASTM B361; and (5) titanium alloys in accordance with ASTM B363.

Pipe Fittings Dimensions Tolerance as per ASME B16.9:

Sizes 1/2″ – 48″

MSS SP-97

MSS SP-97 Standard Practice covers essential dimensions, finish, tolerances, testing, marking, material, and minimum strength requirements for 90 degree integrally reinforced forged branch outlet fittings of buttwelding, socket welding, and threaded types.

Chemical Composition Requirements of MSS SP 75

Elements Value, %
Carbon (C) ≤0.30
Manganese (Mn) ≤1.60
Phosphorus (P) ≤0.035
Sulfur (S) ≤0.035
Copper (Cu) ≤0.50
Nickel (Ni) ≤0.50
Silicon (Si) ≤0.50
Chromium (Cr) ≤0.25
Molybdenum (Mo) ≤0.13
Vanadium (V) ≤0.13
Columbium (Cb) ≤0.10
Titanium(Ti) ≤0.05

*1. The sum of Cu, Ni, Cr and Mo shall not exceed 1%.

*2. Carbon equivalent C.E.=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 shall not exceed 0.45%.


Beveling

In the behavior, we make beveling after shot blasting, bevel ends are fully machined by advanced equipment Double Beveling Machine ensure the height, length, thickness, O.D. and I.D. are all qualified.

Welding Bevel acc. to

The ends of all buttweld fittings are bevelled, exceeding wall thickness 4 mm for austenitic stainless steel, or 5 mm for ferritic stainless steel. The shape of the bevel depending upon the actual wall thickness. This bevelled ends are needed to be able to make a “Butt weld”.

ASME B16.25 covers the preparation of buttwelding ends of piping components to be joined into a piping system by welding. It includes requirements for welding bevels, for external and internal shaping of heavy-wall components, and for preparation of internal ends (including dimensions and dimensional tolerances).

Our in-hourse R&D team developed bevel ends equipment are good using in thickness 2mm to 20mm pipe fittings, guarantee high efficiency and high quality.

These weld edge preparation requirements are also incorporated into the ASME standards (e.g., B16.9, B16.5, B16.34).

Nominal wall Thickness : t End Preparation
t<5mm (for austenitic alloy steel Cut square or slightly chamfer
t<4mm) at manufacturer ' s option
5<22mm
(4<22mm)< td="" style="box-sizing: border-box;"><22mm)<><22mm
Plain Bevel as in sketch ( a ) above
t>22mm Compound Bevel as in sketch ( b ) above

Process

For the manufacturing process of all pipe fittings, forming is an indispensable process. Because the forming process of different products is different, it needs a long time.

Fittings process

Heating

In order to meet the requirements of material deformation in the forming process, it is necessary to heat the blank when the tube is manufactured by hot forming method. The temperature usually depends on the material and heating process.

During the forming of hot pushing elbow or hot bending elbow, the medium frequency or high frequency induction heating method is usually used, and the flame heating method is also used. This kind of heating mode is continuous heating which is synchronous with the forming process of elbow or elbow. The tube blank is heated in motion and the forming process is completed.

When hot pressing elbow, hot pressing tee or forging are formed, the heating method of reverberatory furnace, flame heating, induction heating or electric furnace heating are usually adopted. This kind of heating is to first heat the tube blank to the required temperature, and then put it into the die for pressing or forging.

Welding

There are two kinds of pipe fittings with welding seam. One is the pipe fittings made of welded pipe. For the pipe fitting manufacturer, the forming process of welded pipe is basically the same as that of seamless pipe, and the forming process of pipe fitting does not include welding process; the other is that the pipe fitting manufacturer completes the welding process required for pipe fitting forming, such as the elbow formed by assembling and welding after single piece pressing The tee pipe is welded into tube blank after being rolled by steel plate drum, etc.

The commonly used welding methods of pipe fittings are manual arc welding, gas shielded welding and automatic welding.

Our factory guides the welding work according to the preparation of the welding procedure specification, and carries out the welding procedure qualification according to the corresponding specification requirements, so as to verify the correctness of the welding procedure specification and evaluate the welding ability of the welder.

Deep Drawing method of end caps

One of the most common manufacturing methods for caps, where plate is cut out in a circle and formed by deep drawing.

Deep drawing is the manufacturing process of forming sheet metal stock, called blanks, into geometrical or irregular shapes that are more than half their diameters in depth. Deep drawing involves stretching the metal blank around a plug and then moving it into a moulding cutter called a die.

A drawing press can be used for forming sheet metal into different shapes and the finished shape depends on the final position that the blanks are pushed down in. The metal used in deep drawing must be malleable as well as resistant to stress and tension damage.


Application

Pipe Tees are widely used in various commercial and industrial applications. Industrial applications include.

We are manufacturer of Reducing tee and supply high quality Reducing tee in both large and small quantities worldwide & offer you the best prices in the market.

Delivery

Inspection

Visual Inspection is conducted on fittings to check any surface imperfections. Both fittings body and weld are checked for any visible surface imperfections such as dents, die marks, porosity, undercuts, etc. Acceptance as per applicable standard.

ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers

Packing

For packing of carbon steel flanges with painting,we would use the bubble wrap to protect the painting.For flanges without painting or oiled with long-term shipment,we would suggest client to use the anti-tarnish paper and plastic bag to prevent the rust.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.

Ni-Hard Wearback Pipes Ni-Hard Wearback Pipes
//右侧淡出对话框