ASTM A333/A333M

ASTM A333/A333M Standard Specification for Seamless and Welded Steel Pipe for Low-Temperature Service and Other Applications with Required Notch Toughness.

Download PDF
ASTM A333 Low Temperature Pipe

ASTM A333/A333M specification covers wall seamless and welded carbon and alloy steel pipe intended for use at low temperatures. The pipe shall be made by the seamless or welding process with the addition of no filler metal in the welding operation. All seamless and welded pipes shall be treated to control their microstructure. Tensile tests, impact tests, hydrostatic tests, and nondestructive electric tests shall be made in accordance to specified requirements.

Scope

Several grades of ferritic steel are included. Some product sizes may not be available under this specification because heavier wall thicknesses have an adverse affect on low-temperature impact properties. The pipe shall be made by the seamless or welding process with the addition of no filler metal in the welding operation. All seamless and welded pipes shall be treated to control their microstructure. Tensile tests, impact tests, hydrostatic tests, and nondestructive electric tests shall be made in accordance to specified requirements.

ASTM A333 alloy pipe shall be made by the seamless or welding process with the addition of no filler metal in the welding operation. All seamless and welded pipes shall be treated to control their microstructure. Tensile tests, impact tests, hydrostatic tests, and nondestructive electric tests shall be made in accordance to specified requirements. Some product sizes may not be available under this specification because heavier wall thicknesses have an adverse affect on low-temperature impact properties.

ASTM A333 steel pipe production includes a series of visual surface imperfections to guarantee that they have been properly manufactured. ASTM A333 steel pipe shall be subject to rejection if surface imperfections acceptable are not scattered, but appear over a large area in excess of what is considered a workmanlike finish. The finished pipe shall be reasonably straight.

Surface inspection requirements

Surface imperfections that penetrate more than 12½ % of the nominal wall thickness or encroach on the minimum wall thickness shall be considered defects. ASTM A333 steel pipe with such defects shall be given one of the following dispositions:

Referenced Documents

What Is The Difference Between A106 And A333 Pipes?

ASTM A333 Grade 6 pipe is a low-temperature carbon steel pipe that is typically used in applications where the pipe will be exposed to temperatures below -45°C. Because of its superior notch toughness, it performs well in cryogenic conditions and has demonstrated durability at temperatures as low as -452°F. This makes it the perfect candidate for applications where the pipe will be subject to cold temperatures throughout construction and/or operation.

A333 Seamless Pipe (ASME S/A-333) comes in nominal pipe sizes 1/4″ to 24″ O.D.

Pipe dimensions range from 1/2″ to 24″ O.D. for A333 welded pipes (ASME S/A-333).

Carbon and alloy steel pipe with a nominal (average) wall thickness intended for low temperature operation is covered by ASTM A333. There are several ferritic steel grades included in this standard. A106 GR. B Carbon Steel Seamless Pipes Some product sizes may not be available under this specification because heavier wall thicknesses harm low-temperature impact properties.

The difference between ASTM A333 and ASTM A106 is that ASTM A333 is a low-temperature carbon steel pipe that can be used as a structural pipe, while ASTM A106 is a non-structural carbon pipe that is used in high-temperature applications.

The ASTM A106 Gr.B carbon steel Pipe is valued for its high tensile strength and toughness, high oxidation resistance, and prolonged durability. Additionally, the Seamless Pressure ASTM A106 Pipe has wide applications in industries such as the gas and oil industry, water, heating, pipeline construction, and many others.

However, the ASTM A106 Gr.B carbon steel Pipe should be used only at temperatures less than 430°C, as exceeding this temperature can result in a reduction in its mechanical properties. The pipe is therefore not suitable for very high-temperature services.

Mechanical requirements of ASTM A333 alloy pipe

Grade Tensile Strength (MPa) Yield Point (MPa) Elongation (%)
Y X
ASTM A333 Grade 1 ≥380 ≥205 ≥35 ≥25
ASTM A333 Grade 3 ≥450 ≥240 ≥30 ≥20
ASTM A333 Grade 4 ≥415 ≥240 ≥30 ≥16.5
ASTM A333 Grade 6 ≥415 ≥240 ≥30 ≥16.5
ASTM A333 Grade 7 ≥450 ≥240 ≥30 ≥22
ASTM A333 Gr. 8 ≥690 ≥515 ≥22
ASTM A333 Grade 9 ≥435 ≥315 ≥28
ASTM A333 Grade 10 ≥550 ≥450 ≥22
ASTM A333 Grade 11 ≥450 ≥240 ≥18

*The elongation values are furnished on the basis of standard round 2 inch or 50 mm(or 4D) specimens.

*Elongation of Grade 11 is for all walls and small sizes tested in full section.

Chemical composition of ASTM A333 alloy pipe

Grade Chemical Composition (%)
C Si Mn P S Cr Ni Cu Mo V Al
Grade 1 ≤0.30 0.40-1.06 ≤0.025 ≤0.025
Grade 3 ≤0.19 0.18-0.37 0.31-0.64 ≤0.025 ≤0.025 3.18-3.82
Grade 4 ≤0.12 0.18-0.37 0.50-1.05 ≤0.025 ≤0.025 0.44-1.01 0.47-0.98 0.40-0.75 0.04-0.30
Grade 6 ≤0.30 ≥0.10 0.29-1.06 ≤0.025 ≤0.025
Grade 7 ≤0.19 0.13-0.32 ≤0.90 ≤0.025 ≤0.025 2.03-2.57
Grade 8 ≤0.13 0.13-0.32 ≤0.90 ≤0.025 ≤0.025 8.40-9.60
Grade 9 ≤0.20 0.40-1.06 ≤0.025 ≤0.025 1.60-2.24 0.75-1.25
Grade 10 ≤0.20 0.10-0.35 1.15-1.50 ≤0.03 ≤0.015 ≤0.15 ≤0.25 ≤0.015 ≤0.50 ≤0.12 ≤0.06
Grade 11 ≤0.10 ≤0.35 ≤0.6 ≤0.025 ≤0.025 ≤0.50 35.0-37.0 ≤0.50

*For Grade 1 and 6, each reduction of 0.01% C below 0.30%, an increase of 0.05 % Mn above 1.06 % would be permitted to a max. of 1.35%.

*For Grade 6, the limit for columbium may be increased up to 0.05 % on heat analysis and 0.06 % on product analysis.

*Generally, the carbon equivalent C.E = [C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15] shall not exceed 0.43% by heat analysis.

Production specification range of low temperature pipe products

No. Order No. Size description
O.D. /mm W.T. /mm Legnth /m
1 A333 Gr.6 A333 Gr.6/X42NS 10-127 1-20 6-12.0
42-114.3 3.5-6 6-12.2
42-114.3 6-12 6-12.2
114.3-180 3.8-8 6-12.2
114.3-180 8-22 6-12.2
68-180 10-14 6-12.2
69-254 14-55 6-12.2
140-340 6-8 6-12.2
140-368 8-42 6-12.2
318-720 14-50 4-12.5
2 A333 Gr.6/X52QS 42-114.3 3.5-12 6-12.2
114.3-180 3.8-22 6-12.2
68-254 10-40 6-12.2
140-368 6-40 6-12.2
318-720 14-40 4-12.5
140-368 6-25 6-12.2
318-720 14-25 4-12.5
3 16MnDG 10-127 1-20 6-12.0
42-114.3 3.5-12 6-12.2
114.3-180 3.8-22 6-12.2
68-254 10-55 6-12.2
140-368 6-42 6-12.2
318-720 14-120 4-12.5

Strike temperature condition

Crade The lowest temperature for strike test
ASTM A333 Grade 1 -50 -45
ASTM A333 Grade 3 -150 -100
ASTM A333 Grade 4 -150 -100
ASTM A333 Grade 6 -50 -45
ASTM A333 Grade 7 -100 -75
ASTM A333 Grade 8 -320 -195
ASTM A333 Grade 9 -100 -75
ASTM A333 Grade 10 -75 -60
FAQ

Q&A

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The most important and desired changes in alloy steel are

Alloy steels are made by combining carbon steel with one or several alloying elements, such as manganese, silicon, nickel, titanium, copper, chromium and aluminum. These metals are added to produce specific properties that are not found in regular carbon steel. The elements are added in varying proportions (or combinations) making the material take on different aspects such as increased hardness, increased corrosion resistance, increased strength, improved formability (ductility); the weldability can also change.

Alloying Elements & Their Effects

Pipes, Tubes and Hollow Sections

Norms

Grade

Alloying Elements

Commonly used alloying elements and their effects are listed in the table given below.

Alloying Elements Effect on the Properties
Chromium Increases Resistance to corrosion   and oxidation. Increases hardenability and wear resistance. Increases high   temperature strength.
Nickel Increases hardenability. Improves   toughness. Increases impact strength at low temperatures.
Molybdenum Increases hardenability, high   temperature hardness, and wear resistance. Enhances the effects of other   alloying elements. Eliminate temper brittleness in steels. Increases high   temperature strength.
Manganese Increases hardenability. Combines   with sulfur to reduce its adverse effects.
Vanadium Increases hardenability, high   temperature hardness, and wear resistance. Improves fatigue resistance.
Titanium Strongest carbide former. Added to   stainless steel to prevent precipitation of chromium carbide.
Silicon Removes oxygen in steel making.   Improves toughness. Increases hardness ability
Boron Increases hardenability. Produces   fine grain size.
Aluminum Forms nitride in nitriding steels.   Produces fine grain size in casting. Removes oxygen in steel melting.
Cobalt Increases heat and wear   resistance.
Tungsten Increases hardness at elevated   temperatures. Refines grain size.

ASTM A335 Chrome Moly Pipe

ASTM A335 Pipe (ASME S/A335, Chorme-Moly) is a seamless ferritic Alloy-Steel Pipe for high temperature service.

ASTM A213 Alloy Tubes

ASTM A213 covers seamless ferritic and austenitic steel boiler,Boiler Tube, and heat-exchanger tubes for high temperature services, designated Grades T5, TP304, etc.

Hot products

Star

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.