JIS G3462 Steel Tube

JIS G3462 Steel Tube is used in high-temperature applications such as boilers and heat exchangers.

JIS G3462 Steel Tube

JIS G3462 Steel Tube is a standard specification for alloy steel tubes intended for use in boilers, heat exchangers, and other high-temperature applications. The specification was established by the Japanese Industrial Standard (JIS) and outlines the requirements for alloy steel tubes used for exchanging heat both inside and outside of the tube.

The JIS G3462 standard specifies several grades of alloy steel tubes, including STBA12, STBA13, STBA20, and STBA22. These tubes are typically produced in seamless form, although electric resistance welded options are also available.

JIS G3462 steel tubes can also be used as components of fired heaters. Other standards that are compatible with JIS G3462 include DIN 17175-79, which covers electrical resistance or induction welded steel tubes for elevated temperature.

JIS G3462 Steel Tube is an important standard for the manufacture of alloy steel tubes, especially those used in high-temperature applications such as boilers and heat exchangers.

JIS G3462 Steel Tube
JIS G3462 Steel Tube
JIS G3462 Steel Tube

Scope

This Standard specifies the alloy steel tubes (hereafter referred to as "tubes") used for exchanging heat between the inside and outside of the tube, such as water tubes,smoke tubes, superheater tubes and air preheater tubes of boilers, and heat exchanger tubes, condenser tubes and catalyst tubes used in chemical and petroleum industries.It is not applicable to the steel tubes for heating furnace and steel heat exchanger tubes for low temperature service.

This Standard applies to tubes with an outside diameter of 15.9 mm. to 139.8 mm.
With the preyious agreement of the  manufacturer, the purchaser may designate the  special quality requirements and designate U-bend tubes to be applied,given in Annex JA and Annex JBA respectively in addition to the requirements specified .in the. text of this Standard.

NOTE: The International Standards corresponding to this Standard and the symbol of degree of correspondence are as follows:
ISO 9329-2 : 1997 Seamless steel tubes for pressure purposes - Technical delivery conditions - Part 2 : Unalloyed and alloyed steels with specified eleva ted tempera ture properties ISO 9330-2 : 1997 Welded steel tubes for pressure purposes - Technical delivery conditions - Part 2 : Electric resistance and induction welded unalloyed and alloyed steel tubes with specified elevated temperature properties (overall evaluation: MOD)The symbols which denote the degree of correspondence in the contents between the relevant International Standards and JIS are IDT (identical), MOD (modified), and NEQ (not equivalent) according to ISO/lEe Guide 21-1.

Normative references

The following standards contain provisions which, through reference in this text,constitute provisions of this Standard. The most recent editions of the standards (including amendments) indicated below shall be applied.

Classification and symbols

Tubes shall be classified into grades, and the designation of grade and designation of manufacturing method shall be as given in table 1

Table 1 Designation of grade, designation of manufacturing method and marking

Designation of grade Designation of manudacturing method
Tube manufacturing method Finishing method Marking
Molybdenum steel tube STBA12 Seamless: S
Electric resistance welded: E
Hot finished: H
Cold finished : C
As electric resistance welded: G
Designation of manudacturing method shall be in accordance with 12 b).
STBA13
Chromium -molybdenum  steel tube STBA20
STBA22
STBA23
STBA24
STBA25 Seamless: S Hot finished: H
Cold finished : C
STBA26

Manufacturing method

The manufacturing method shall be as follows.

(a)Tubes shall be manufactured by a combination of the manufacturing method and finishing method given in table 1
(b)The tubes of STBA 12, STBA 13, STBA 20 and STBA 22 shall be manufactured by seamless process or by electric resistance welding process and the tubes of STBA 23, STBA24, STBA 25 and STBA 26 shall be manufactured by seamless process.
(c)Tubes shall be subjected to the Heat treatment specified in table 22.Other heat treatments not specified in table 2 shall be agreed between the purchaser and the manufacturer.
(d) Plain end finishing shall be applied to the shape of tube end unless otherwise specified.

Table 2 Heat treatment

Designation of grade Heat treatment a)
STBA12
STBA13
Low temperature annealing, isothermal annealing, full annealing,normalizing or normalizing followed by tempering
STBA20
STBA22
Low temperature annealing, isothermal annealing, full annealing or normalizing followed by tempering
STBA23
STBA24
STBA25
STBA26
Isothermal annealing, full annealing or normalizing followed by tempering b)
Notes
a) Low temperature annealing shall not be applied to the electric resistance
welded steel tube.
b)The tempering temperature for STBA 23, STBA 24, STBA 25 and STBA 26
shall be 650°C or higher.

JIS G3462 specifies the alloy boiler steel tubes used for exchanging heat on the inside and outside of the tube, with 8 steel grades from STBA12-STBA26, it has the similar application as JIS G3461, steel tube of this specification could be supplied as U tube. However, it is not applicable to the steel tubes for heating furnace and those for heat exchangers of low temperature service. For final product, heat treatment of the bent portion is not usually performed. However, if there is a request from the orderer, agreement on heat treatment. Sunny Steel is an experienced boiler and pressure steel tube supplier which can offer you JIS G3462 steel tube of all grade and dimension range.

Chemical Compositions(%) of JIS G3462

Grade C Mn P S Si Cr Mo
STBA12 0.10-0.20 0.30-0.80 ≤0.035 ≤0.035 0.10-0.50 0.45-0.65
STBA13 0.15-0.25 0.30-0.80 ≤0.035 ≤0.035 0.10-0.50 0.45-0.65
STBA20 0.10-0.20 0.30-0.60 ≤0.035 ≤0.035 0.10-0.50 0.05-0.08 0.45-0.65
STBA22 ≤0.15 0.30-0.60 ≤0.035 ≤0.035 ≤0.50 0.08-1.25 0.45-0.65
STBA23 ≤0.15 0.30-0.60 ≤0.030 ≤0.030 0.50-1.00 1.00-1.50 0.45-0.65
STBA24 ≤0.15 0.30-0.60 ≤0.030 ≤0.030 ≤0.50 1.90-2.60 0.87-1.13
STBA25 ≤0.15 0.30-0.60 ≤0.030 ≤0.030 ≤0.50 4.00-6.00 0.45-0.65
STBA26 ≤0.15 0.30-0.60 ≤0.030 ≤0.030 0.25-1.00 8.00-10.0 0.90-1.10

Note:

OD refers to the outside diameter.

The above table is only applicable for heat exchanger alloy steel pipes. The buyer can appoint the upper limit value of tensile strength. The upper limit value of tensile strength is the above shown value plus 147 N/mm2.

For the alloy steel tube with the thickness of less than 8 mm, we use NO.12 sample for tensile test. The minimum elongation will be reduced by 1.5% from the table value when the thickness reduces 1 mm. The value ​​obtained will be rounded to an integer value according to JIS Z 8401 (a rounding method). When we take the electric resistance welded steel pipes for tensile test, we also choose NO.12 sample from the parts not containing welding seams.

Mechanical proertiesof JIS G3462

Grade Tensile Strength (Mpa) Yield Strength
(Mpa)
Elongation
(%)
STBA12 ≥382 ≥206 ≥30
STBA13 ≥412 ≥206 ≥30
STBA20 ≥412 ≥206 ≥30
STBA22 ≥412 ≥206 ≥30
STBA23 ≥412 ≥206 ≥30
STBA24 ≥412 ≥206 ≥30
STBA25 ≥412 ≥206 ≥30
STBA26 ≥412 ≥206 ≥30

Packing: Bare/bundles/crates/crate protection at the both sides of tubes or as per customers’ requirements.
Painting: as requested.

The tubes shall be manufactured by seamless process, electric resistance welding process, or butt welding process, and those of other grades shall be manufactured by seamless process or electric resistance welding process. The tube shall be as manufactured or as cold-finished condition, or they shall be subjected to appropriate heat treatment.

The tubes shall be practically straight. and the two ends shall be at right angles to the axis of the tube. The tubes shall be free from defects detrimental to practical use.

Higher temperature resistance or capacity corrosion, end up being widely used by petroleum, chemical engineering, boiler, heat exchanger and other power areas. JIS G3462 alloy steel tube is not applicable for heating furnaces and heat exchangers for low temperature service.

Size Array of JIS G3462 Alloy Steel Pipe

Equivalent steel grade of JIS G3462

KS ASTM JIS DIN BS
Grade number Grade Grade number GRADE Grade number Grade Grade number Grade Grade number
D 3572 STHA12 A161 T1 JIS G3462 STBA12 17175 15Mo 3 -
A209 T1
STHA13 A209 T1a STBA13 - - - -
STHA20 A213 T2 STBA20 - - - -
STHA22 A213 T12 STBA22 17175 13Cr Mo 44 3059  S1 620
S2 620
ERW620
CEW620
STHA23 A199 T11 STBA23 - - - -
A200 T11
A213 T11
STHA24 A199 T22 STBA24 17175 10Cr Mo910 3059 S1 622-440
A200 T22 S2 622-440
A213 T22
STHA25 A199 T5 STBA25 - - - -
A200 T5
A210 T5
STHA26 A199 T9 STBA26 - - - -
A200 T9
A213 T9

Heat treatment of JIS G3462

Symbol of class JIS G3462 Heat treatment
STBA 12
STBA 13
Low temperature annealing, isothermal annealing, full annealing, normalizing or normalizing followed by tempering
STBA 20
STBA22
Low temperature annealing, isothermal annealing, full annealing, normalizing or normalizing followed by tempering
STBA23
STBA 24
STBA 25
STBA 26
Isothermal annealing, full annealing or normalizing followed by tempering

Advantages

JIS G3462 regulates the allowable size deviation of alloy steel pipes, but JST advanced rolling technology can effectively lessens the deviation range and inside the dimension of alloy steel tube better. We may also supply other sizes of pipes solution . customers’ requirements, but ought to ensure these alloy steel pipes pursue IS G3462 standards.

In production process, there always exists flaw, scar, wrinkling, laceration, rolling burr and other defects on alloy steel tube. JST configures UNICORN ultrasonic joint inspection machine, automatic ultrasonic testing equipment, magnetic flux inspection machine and other styles of inspection machines. They can test our alloy steel pipes.

JST also employs professional surface inspectors who’s able to test the inconspicuous defects on the lining and outside surface of alloy steel tubes. As mentioned by the defect characteristics, perform polishing, removal, repair when a series of processes.

JIS G3461 Carbon Steel Pipes Dimensions Tolerance

Tolerances of Wall Thickness

Tolerances Division of wall
thickness (mm)
Division of method of manufacture Hot finished seamless steel tube Cold finished seamless steel tube Electric resistance welded steel tube
Division of outside diameter (mm) Under 100 100 or over Under 40 40 or over Under 40 40 or over
Tolerances on wall thickness % Under 2 --- --- +0.4mm +22



0
+0.3 +18



0
0 0
2 or over to and excl. 2.4 +40 --- +20



0
+18



0
0
2.4 or over to or excl. 3.8 +35 +35
0 0
3.8 or over to or excl. 4.6 +33 +33
0 0
4.6 or over +28 +28
0 0
Tolerances  on
thickness disparity%
--- Within 22.8 of wall thickness --- ---

Tolerances of  Outside Diameter

Division of outside diameter Tolerances on outside diamete
 Hot finished seamless steel tube Cold finished seamless steel tube Electric resistance welded steel tube other than cold finished Cold  finished  electric resistance welded steel tube
Under 25 +0.4

-0.8
【0.10 【1.5 【0.10
25 or over to and excl. 40 【0.15 【0.20 【0.15
40or over to and excl. 50 【0.20 【0.25 【0.20
50 or over to and excl 60 【0.25 【0.30 【0.25
60 or over to and excl. 80 【0.30 【0.40 【0.30
80 or over to and excl. 100 【0.40 +0.40 【0.40
-0.60
100 or over to and excl.12 +0.4

-1.2
+0.40
-0.60
+0.40
-0.80
+0.40
-0.60
120 or over to and excl.160 +0.40
-0.80
+0.40
-1.00
+0.40
-0.80
160 or over to and excl.200 +0.4 +0.40 +0.40 +0.40
-1.8 -1.20 -1.20 -1.20
200 or over +0.4 +0.40 +0.40 +0.40
-2.4 -1.60 -1.60 -1.60

Tolerances of Length

Division Tolerance on length
50 mm or under in
outside diameter
7 m or under in length +0.7 mm  
0  
Over 7 m in length Add 3 mm to the plus side permissible deviation given above for each increase of 3m or its fraction in length. However, the maximum value shall be 15 mm.  
Over  50  mm  in
outside diameter
7 m or under in length +10mm  
0  
Over 7 m in length Add 3 mm to the plus side permissible deviation given above for each increase of 3m or its fraction in length. However, the maximum value shall be 15mm.  

Other Range of JIS standards for steel pipes

JIS seamless pipe according to alloy, stainless steel or carbon. It tests steel’s properties, hardness, resistance to corrosion, pitting, heat treating processes and others. The results are listed in a main JIS steel grade for steel pipe as below.

JIS G3439

Seamless Steel Oil Well, Casing, Tubing and Drill Pipe
Steel grade: STO-G, STO-H, STO-J, STO-N, STO-C, STO-D, STO-E
Application: Seamless Steel Oil Well, Casing, Tubing and Drill Pipe

JIS G3441

Steel grade:SCr 420TK, SCM415TK, SCM418TK, SCM420TK, SCM430TK, SCM435TK, SCM440TK
Application:Alloy Steel Tubes for General Structural Purpose

JIS G3444

Steel grade: STK 30, STK 41, STK 50, STK 51, STK 55
Application: Carbon Steel Tubes for General Structural Purpose
Dimension Range: 21.7-1016.0 mm

Application: Carbon Steel Tubes for Machine Structural Purposes

JIS G3455

Steel grade: STS 38, STS 42, STS 49
Application: Carbon Steel Pipes for High Pressure Service
Dimension Range: 10.5-660.4 mm

JIS G3456

Steel grade: STPT 38, STPT 42, STPT 49
Application: Carbon Steel Pipes for High Temperature Service
Dimension Range:10.5-660.4 mm

JIS G3460

Steel grade:STPL 39, STPL 46, STPL 70
Application: Steel Pipes for Low Temperature Service
Dimension Range:10.5-660.4 mm

JIS G3464

Steel grade: STBL 39, STBL46, STBL 70
Application: Steel Heat Exchanger Tubes for Low Temperature Service
Dimension Range: 15.9-139.8 mm

JIS G3465

Steel grade: STM-055, STM-C65, STM-R60, STM-1170, STM-1180, STM-R85
Application: Seamless Steel Tubes for Drilling
Dimension Range: Casing: 43-142mm / Hollow Pipes: 34-180mm / Drilling:33.5-50mm

JIS G3467

Steel grade: STF 42, STFAl2, STFA22, STFA23, 5TFA24, STFA23, STFA26
Application:Steel Tubes for Fired Heater
Dimension Range:60.5-267.4mm

JIS G 3101 SS400

JIS G 3101 SS400 is one of the most commonly used hot rolled general structural steel.
SS400 is a Japanese brand of ordinary steel products

Seamless tube processing

With years of expertise, we provide a diverse array of steel tube processing options. From sawing and machining tube blanks to intricate bending and upsetting operations, we actively assist you throughout your projects.

Our capabilities extend to eccentricity reduction and concentricity enhancement through turning and grinding. We excel in creating complex geometries using processes like rotary swaging and axial forming. Additionally, we offer property modifications via partial heat treatment, ensuring tailored solutions for your specific needs.

Variable wall thicknesses

Variable wall thicknesses

Drilling / stamping / lasering

Drilling / stamping / lasering

Peeling / roller burnishing

Peeling / roller burnishing

Cold forming

Cold forming

Cutting

Cutting

Beveling

Beveling

Deburring

Deburring

Thread rolling / threading

Thread rolling / threading

Partial hardening

Partial hardening

Turning / milling / grinding

Turning / milling / grinding

Reducing / expanding

Reducing / expanding

Machining

Machining

application

Application

Alloy steel pipes are ideally suitable for chemical, petrochemicals, and other energy-related applications.

The alloy steel pipe adopts high quality carbon steel, alloy structural steel and stainless & heat resisting steel as raw material through hot rolling or cold drawn to be made.

Alloy steel can be used in process area where carbon steel has limitation such as

As an important element of steel products, alloy steel pipe can be divided into seamless steel pipe and welded steel pipe according to the manufacturing technique and tube billet shape.

Here you can see the common alloy steel grade that you will come across.

Why the application of alloy steel pipe is wider than others

There are many kinds of materials used for transport in industrial production. Specifically we will have more choices and it is not limited to the use of alloy steel pipe. But even in the face of more choices, many people tend to choose alloy steel pipe. People make their own choices will have their own reasons. This means the alloy steel pipe application has its own advantages. Compared with transmission lines made of other materials, after it meets the basic application requirements, its quantity is lighter. Then in the practical application of alloy steel pipe, it will have more advantages because of this. Besides its physical characteristic advantage, it also has economic advantages. The wide application of alloy steel pipe is with kinds of reasons. So in practical usage, we can exploit the advantages to the full, in this way can we get more profits in these applications of alloy steel pipe.

What requirements should alloy steel pipe application meet

The transportation of kinds of gases or liquids in production needs to rely on alloy steel pipe. This shows that the actual role of alloy steel pipe application is important. High temperature resistant and low temperature resistant is the tolerance of temperature. In the practical application of alloy steel pipe, there will be many materials need to be transported. However their temperatures are not the same. So this can be the basic requirement to alloy steel pipe. It needs more corrosion resistance. Corrosion resistant material is the best material during transporting, because it is corrosion resistant. So it can be used in more occasions. And it is definitely very convenient for users.

The biggest advantages of alloy steel pipe

Can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy steel pipe total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy steel pipe to provide a wider space for the development of the industry. The future needs of the average annual growth of China’s high-pressure alloy steel pipe long products up to 10-12%.

Specification, standard and identification of alloy steel pipes

Alloy Steel pipe contains substantial quantities of elements other than carbon such as nickel, chromium, silicon, manganese, tungsten, molybdenum, vanadium and limited amounts of other commonly accepted elements such as manganese, sulfur, silicon, and phosphorous.

Industries We Serve

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The biggest advantages of alloy steel pipe can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy tube total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy tube to provide a wider space for the development of the industry. According to the Chinese Special Steel Association alloy pipe Branch Expert Group, the future needs of the average annual growth of China’s high-pressure alloy pipe long products up to 10-12%.

Q&A

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The most important and desired changes in alloy steel are

Alloy steels are made by combining carbon steel with one or several alloying elements, such as manganese, silicon, nickel, titanium, copper, chromium and aluminum. These metals are added to produce specific properties that are not found in regular carbon steel. The elements are added in varying proportions (or combinations) making the material take on different aspects such as increased hardness, increased corrosion resistance, increased strength, improved formability (ductility); the weldability can also change.

Alloying Elements & Their Effects

Pipes, Tubes and Hollow Sections

Norms

Grade

Alloying Elements

Commonly used alloying elements and their effects are listed in the table given below.

Alloying Elements Effect on the Properties
Chromium Increases Resistance to corrosion   and oxidation. Increases hardenability and wear resistance. Increases high   temperature strength.
Nickel Increases hardenability. Improves   toughness. Increases impact strength at low temperatures.
Molybdenum Increases hardenability, high   temperature hardness, and wear resistance. Enhances the effects of other   alloying elements. Eliminate temper brittleness in steels. Increases high   temperature strength.
Manganese Increases hardenability. Combines   with sulfur to reduce its adverse effects.
Vanadium Increases hardenability, high   temperature hardness, and wear resistance. Improves fatigue resistance.
Titanium Strongest carbide former. Added to   stainless steel to prevent precipitation of chromium carbide.
Silicon Removes oxygen in steel making.   Improves toughness. Increases hardness ability
Boron Increases hardenability. Produces   fine grain size.
Aluminum Forms nitride in nitriding steels.   Produces fine grain size in casting. Removes oxygen in steel melting.
Cobalt Increases heat and wear   resistance.
Tungsten Increases hardness at elevated   temperatures. Refines grain size.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.

Ni-Hard Wearback Pipes Ni-Hard Wearback Pipes
//右侧淡出对话框