SAW Pipes

SAW is normally operated in the automatic or mechanized mode, however, semi-automatic (hand-held) SAW guns with pressurized or gravity flux feed delivery are available.

SAW Pipes

Submerged arc welding (SAW) is a common arc welding process.

The process is normally limited to the flat or horizontal-fillet welding positions (although horizontal groove position welds have been done with a special arrangement to support the flux).

SAW pipe is made of hot rolled coiled steel by automatic submerged arc weld under normal atmospheric temperature. All the pipes are produced according to API Spec 5L, GB/T9711.1, GB/T9711.2, ASTM A252-89 standard. These pipes mainly used in petroleum and natural gas industry to transport flammable and non-flammable liquid and steel construction.

SAW means submerged arc weld ,it can be classified into LSAW and SSAW

Size range

The pipes are supplied according to appropriate standards as well as customer specifications in a large variety of steel grades and dimensions.

Execute Standard

Specific requirements on execution, tolerances, lengths, and mechanical & chemical properties are offered on request.

Material

Pipe Coating: HDPE/ 3PE/ 3PP/ Pipe cement mortar lining

In addition to above specification, the pipes can be produced according to customer’s requirements.

Mainly usage

Spiral welded steel pipes are widely used in Oil, Natural Gas, Water and other flammable & nonflammable liquid conveyance and distribution pipelines, steel structures for construction and other general purposes by means of their wide size range.


SAW Welded Pipe Manufacturing Method

SAW Pipes

In single seam SAW pipe, wedding is done with the help of submerged arc welding process. In this method, a welding arc is submerged in welding flux. A Continues solid filler wire is fed from the outside. The pipe is welded first inside and then from the outside.

In the case of double seam saw pipe first two halves are joined by tack weld which is called fit-up. Double seam saw pipe is havening a two weld seam opposite to each other. Both the seams are welded from inside and outside of the pipe. In the case of high thickness pipe, multiple pass welding is done.

In a spiral saw pipe, steel plate from the de-coiler is formed in a spiral loop. This spiral loop is then welded from inside and outside of the pipe. Because of the method of manufacture, a wide variety of diameters can be produced. Spiral saw pipes are used for low-pressure services.

Whereas straight saw pipes are used for medium to high-pressure services. Spiral saw pipes are less costly compared to straight saw pipe.

Once the welding is completed heat treatment is carried out on the weld or on the full body of pipe, this depends on the thickness of pipes. Weld seams are also subjected to various non-destructive testing such as RT & UT to ensure the soundness of the weld material.

Once all NDT is completed pipes are hydro tested to ensure strength and ability to remain leak proof under pressure. In the last stage of inspection, the pipe is checked visually and dimensionally by competent inspection engineer. He will ensure that pipe is meeting the code, standard, and specification requirements. Once the Inspection engineer cleared the pipe, it will mark as per the standard requirements & send for the packaging.


Difference between ERW and SAW steel pipe

As ERW steel pipe and SAW steel pipe in the pipe during forming, welding and process is different, so that two kinds of steel pipe in the performance there are some differences.

ERW steel pipe surface quality is superior to spiral submerged arc welded pipe, ERW steel pipe surface is smooth, smooth, beautiful, SAW steel pipe internal and external weld reinforcement.

ERW steel pipe weld defect types is less than the saw steel pipe. Saw steel pipe with solvent deposited, more types of defects, in addition to volume defects, there are wire-line trap. ERW steel pipe weld defects only wire-line and straight welds, the inspection process easy to follow, and the defects in the maximum reflection at, once the lack of implicit, ultrasonic reflecting the strong, easy to detect.

ERW steel pipe related to saw steel pipe in residual stress ratio is low. Since ERW pipe deformation in the deformation process more fully, coupled subsequent sizing flat oval, elliptical vertical changes and necking, making ERW pipe residual stress becomes smaller. Physical testing showed that the same specifications, the same material ERW pipe after incision along the axis, the axial and transverse incisions smaller displacement than the spiral submerged arc welded pipe.

ERW Pipe overall performance of the same, when the pipe becomes defective, steel scrap judgment, allow welding. SAW steel pipe allowed, and pipe welding performance and overall performance is inconsistent, welding place prone to stress corrosion cracking. Experiments show that stress corrosion fatigue test ERW pipe spiral submerged arc welded pipe length than life.

Welded pipes specification and size

API SPEC 5CT

Product Name Executive Standard Dimension (mm) Steel Code / Steel Grade
Casting API 5CT Ø48.3~273 x WT2.77~11.43 J55, K55, N80, L80
Tubing API 5CT Ø48.3~273 x WT2.77~11.43 J55, K55, N80, L80, H40
 

API SPEC 5L

Product Name Executive Standard Dimension (mm) Steel Code / Steel Grade
Line Pipes API 5L Ø60.3~273.1 x WT2.77~12.7 A25, A, B, X42, X46, X52, X56, X60, X65, X70, X80

ASTM / ASME

Product Name Executive Standard Dimension (mm) Steel Code / Steel Grade
Electric-Resistance-Welded Steel Pipes ASTM A135 Ø42.2~114.3 x WT2.11~2.63 A
Electric-Resistance-Welded Carbon Steel and Carbon-Manganese Steel Boiler and Superheater Tubes ASTM A178 42.2-114.3 x 2.11-2.63 A, C, D
ERW and Hot-dip Galvanized Steel Pipes ASTM A53 Ø21.3~273 x WT2.11~12.7 A, B
Pipes for Piling Usage ASTM A252 Ø219.1~508 x WT3.6~12.7 Gr.2, Gr.3
Tubes for General Structural Purpose ASTM A500 Ø21.3~273 x WT2.11~12.7 Gr.2, Gr.3
Square Pipes for General Structural Purpose ASTM A500 25 x 25~160 x 160 x WT1.2~8.0 Carbon Steel
 

DIN

Product Name Executive Standard Dimension (mm) Steel Code / Steel Grade
Threaded Steel Pipes DIN 2440 Ø21~164 x WT2.65~4.85 Carbon Steel

BS

Product Name Executive Standard Dimension (mm) Steel Code / Steel Grade
Screwed and Socketed Steel Tubes BS 1387 Ø21.4~113.9 x WT2~3.6 Carbon Steel

EN

Product Name Executive Standard Dimension (mm) Steel Code / Steel Grade
Scaffolding Pipes EN 39 Ø48.3 x WT3.2~4 Carbon Steel

JIS

Product Name Executive Standard Dimension (mm) Steel Code / Steel Grade
Carbon Steel Tubes for General Structure Purpose JIS G3444 Ø21.7~216.3 x WT2.0~6.0 Carbon Steel
Carbon Steel Tubes for Machine Structure Purpose JIS G3445 Ø15~76 x WT0.7~3.0 STKM11A, STKM13A
Carbon Steel Pipes for Ordinary Piping JIS G3452 Ø21.9~216.3 x WT2.8~5.8 Carbon Steel
Carbon Steel Pipes for Pressure Service JIS G3454 Ø21.7~216.3 x WT2.8~7.1 Carbon Steel
Carbon Steel Rigid Steel Conduits JIS G8305 Ø21~113.4 x WT1.2~3.5 G16~G104, C19~C75, E19~E75
Carbon Steel Rectangular Pipes for General Structure JIS G3466 16 x 16~150 x 150 x WT0.7~6 Carbon Steel

Coating

Pipeline coating is the most consistent and successful solution for protecting ERW pipes from corrosion, from moisture, other harmful chemicals.

Anti-corrosion steel pipe is processed through the preservation process, which can effectively prevent or slow down the process in the transport and use of chemical or electrochemical corrosion reaction of steel pipe.

Therefore pipe anti-corrosion layer is an important barrier to prevent soil erosion. A well-known foreign scholar put forward” 3PE france protective layer”, so far, anti-corrosion methods is widely used.

Coated pipes offer high resistance to corrosion on pipes and provide many benefits such as:

  1. Increased Flow Capacity – A coating on pipes helps provide a smoother surface thus improving gas and liquid flow within pipes.
  2. Reduced Cost – The pipeline coating increases the pipes durability so they can be deployed with minimum maintenance cost even in the harshest environments.
  3. Lower energy usage – Various studies have shown that pipelines that are internally coated use less energy for pumping and compression of products through pipes. This helps in increased saving over time.
  4. Clean delivery of products – The inhibitors used for the protection products can also be minimized by the use of coated pipes for delivery of products.
  5. Thus, coating of pipelines can help you in reducing your maintenance cost and at the same time providing a corrosion free reliable protection.
 

Basic functions of erw pipe coating

  1. making the surface of ERW steel pipes free from electrochemical corrosion of the soil medium, the basic physics of bacterial corrosion protection.
  2. resisting the move of the soil medium creep stress, static stress and abrasion force method and structure of the basic machinery protection.

The basic principles of urban gas pipeline coating selection:

Types of coating

Anti corrosion pipe coating specs

Delivery

Measurement size

Measure weld stee pipes
Measure weld stee pipes
Measure weld stee pipes
Measure weld stee pipes
Flat oval pipes
Flat oval pipes

Packing

Packing weld stee pipes
Packing weld stee pipes
Packing weld stee pipes
Packing weld stee pipes
Packing weld stee pipes
Packing weld stee pipes
Packing weld stee pipes
Packing weld stee pipes
Packing weld stee pipes

FAQs

Advantage of ERW pipe

The alloy content of the coil is often lower than similar grades of steel plate, improving the weldability of the spiral welded pipe. Due to the rolling direction of spiral welded pipe coil is not perpendicular to the pipe axis direction, the crack resistance of the spiral welded pipe materials.

What is welded steel pipe?

Welded steel pipe refers to a steel pipe with seams on the surface that is welded by bending and deforming a steel strip or steel plate into a circular, square or other shape. The blanks used for welded steel pipes are steel sheets or strips.

Since the 1930s, with the rapid development of continuous rolling production of high-quality strip steel and the advancement of welding and inspection technology, the quality of welds has been continuously improved, and the varieties and specifications of welded steel pipes have been increasing.

When the T-shaped welded steel pipe contains Ni, it has strong corrosion resistance in an acidic environment. In an environment containing sulfuric acid or hydrochloric acid, the higher the Ni content in the T-shaped welded steel pipe, the stronger the corrosion resistance. Under normal circumstances, only adding Cr to the T-shaped welded steel pipe can prevent the phenomenon of corrosion. The poor edge condition of the strip is another important cause of misalignment. The effects of changes in mass flow, heat flow density and structural parameters (ratio of helical curvature diameter to T-shaped welded steel pipe diameter Dc/D) on the heat transfer coefficient of saturated bubble boiling in vertical spiral pipes.

During the production of T-shaped welded steel pipes, misalignment occurs from time to time, and there are many influencing factors. In production practice, the steel pipe is often degraded by the wrong side and out of tolerance. Therefore, it is necessary to analyze the reasons for the misalignment of the spiral steel pipe and its preventive measures.

Due to the poor shape and dimensional accuracy of the head and tail of the uncut steel strip, it is easy to cause the steel strip to bend hard and cause misalignment during butt joint. Simulation parameter range: vertical pipe: pipe diameter D=10mm, pipe length L=660mm; three types of vertical T-shaped welded steel pipe: pipe diameter D=10mm, the change of the ratio of the curvature diameter of the T-shaped welded steel pipe to the spiral pipe diameter is Dc /D=15, 20, 25, helical pitch Pt=20mm, tube lengths are L=503mm, L=660mm, L=817mm respectively. Mass flow G=200~400Kg/(m'2 s), heat flux density q=5~15KW/m'2, saturation pressure p, saturation=0.414880MPa, saturation temperature T, saturation=283.15K.

Technical requirements for welded pipes

The technical requirements and inspection of welded pipes are based on the provisions of the GB3092 "Welded Steel Pipes for Low-Pressure Fluid Transmission". It can be delivered according to fixed length or double length. The surface of the steel pipe should be smooth, and defects such as folds, cracks, delamination, and lap welding are not allowed. The surface of the steel pipe is allowed to have minor defects such as scratches, scratches, weld misalignment, burns and scars that do not exceed the negative deviation of the wall thickness. The thickening of the wall thickness and the presence of inner seam weld bars are allowed at the weld.

Welded steel pipes should be subjected to mechanical performance test, flattening test and flaring test, and must meet the requirements of the standard. When the steel pipe should be able to withstand the internal pressure, carry out a pressure test of 2.5Mpa, and keep it for one minute without leakage. The method of eddy current flaw detection is allowed to replace the hydrostatic test. The eddy current flaw detection is carried out according to the standard of GB7735 "Steel tube eddy current flaw detection inspection method". The eddy current flaw detection method is to fix the probe on the frame, keep a distance of 3~5mm between the flaw detection and the weld seam, and conduct a comprehensive scan of the weld seam by the rapid movement of the steel pipe. The flaw detection signal is automatically processed and sorted by the eddy current flaw detector. To achieve the purpose of flaw detection. The welded pipe after the flaw detection is cut off according to the specified length with a flying saw, and it is rolled off the assembly line through the turning frame. Both ends of the steel pipe should be chamfered with flat ends, printed with marks, and the finished pipes are packed in hexagonal bundles before leaving the factory.

Straight seam steel pipe processing method:

Straight seam steel pipe is a steel pipe whose weld seam is parallel to the longitudinal direction of the steel pipe. Generally, its strength is higher than that of straight seam welded pipe. Narrower billets can be used to produce welded pipes with larger diameters, and the same width of billets can be used to produce welded pipes with different pipe diameters. But compared with the straight seam pipe of the same length, the weld length is increased by 30~100%, and the production speed is lower. So what are its processing methods?

  1. Forging steel: a pressure processing method that uses the reciprocating impact force of the forging hammer or the pressure of the press to change the blank into the shape and size we need.
  2. Extrusion: It is a processing method in which steel puts metal in a closed extrusion box and applies pressure at one end to make the metal extrude from the specified die hole to obtain a finished product with the same shape and size. It is mostly used for the production of non-ferrous metals material steel.
  3. Rolling: A pressure processing method in which the steel metal billet passes through the gap between a pair of rotating rolls (various shapes), and the cross-section of the material is reduced due to the compression of the rolls, and the length is increased.
  4. Pulling steel: it is a processing method in which the rolled metal blank (type, pipe, product, etc.) is pulled through the die hole to reduce the cross section and increase the length. Most of them are used for cold processing.

Quenching Technology for Straight Seam Welded Pipe

The surface quenching and tempering heat treatment of straight seam welded pipe is usually carried out by induction heating or flame heating. The main technical parameters are surface hardness, local hardness and effective hardened layer depth. Vickers hardness tester can be used for hardness testing, and Rockwell or superficial Rockwell hardness tester can also be used. When the surface heat treatment hardened layer is thick, the Rockwell hardness tester can also be used. When the thickness of the heat-treated hardened layer is 0.4-0.8mm, the HRA scale can be used, and when the thickness of the hardened layer exceeds 0.8mm, the HRC scale can be used.

If the parts require high local hardness, local quenching heat treatment can be carried out by means of induction heating. Such longitudinal welded pipes usually need to mark the location of local quenching heat treatment and local hardness value on the drawing. Hardness testing of longitudinally welded pipes shall be carried out in the area. The hardness testing instrument can use a Rockwell hardness tester to test the HRC hardness value. If the heat-treated hardened layer is shallow, a surface Rockwell hardness tester can be used to test the HRN hardness value.

The three hardness values of Vickers, Rockwell and Superficial Rockwell can be easily converted to each other and converted into hardness values required by standards, drawings or users. The corresponding conversion tables are given in the international standard ISO, the American standard ASTM and the Chinese standard GB/T.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.

Ni-Hard Wearback Pipes Ni-Hard Wearback Pipes
//右侧淡出对话框