316/316L Stainless Steel

Type 316/316L Stainless Steel is a molybdenum steel possessing improved resistance to pitting by solutions containing chlorides and other halides.

Alloy 316/316L is an austenitic alloy and similar to 304/304L is used in a wide range of applications. It is an important alloy when it comes to chloride environments and many other chemical process industries. The addition of Molybdenum significantly increases general corrosion resistance as compared to 304/304L and more importantly, increases the chloride pitting resistance.

316/316L has excellent forming and welding characteristics. Due to its superior chloride pitting resistance, it is commonly used in applications involving chlorides or halides. That property is also useful in marine environments.

It also has an excellent resistance to intergranular corrosion in as-welded condition. Dual grade becomes important if heavy gauge welding is performed. This is where intergranular corrosion comes into picture and having a lower carbon version makes it difficult for Chromium Carbide to precipitate in the 797 to 1580 degF (425 to 860 degC) range when the welding is going on for a long time due to the heavy gauge.

It has excellent creep and rupture strength at higher temperatures compared to 304/304L. Finally, it has excellent strength and toughness at cryogenic temperatures.

Electropolished seamless tube

Electropolished seamless tube

What do the AP, MP, BA and EP standards of stainless steel pipes mean?

The terms AP, MP, BA, and EP refer to different surface finishes or treatments applied to the stainless steel.

These finishes are essential in various industries where the appearance, corrosion resistance, and cleanliness of the stainless steel are critical. Here's an explanation of each term:

EP (Electropolished): EP stands for electropolished, a process where the stainless steel tube, after annealing and acid pickling, undergoes electropolishing using electrodes and acid in a tank, creating a chemical reaction to achieve a clean surface through electrochemical polishing. EP tubes are used in pipeline projects with high cleanliness requirements for the stainless steel tube surface.

AP (Annealed and Pickled): AP refers to the condition where the surface of the stainless steel tube is treated after annealing through acid pickling to remove the oxide layer. Stainless steel industrial pipes sold in the market, known for their wide applications, are extensively used in the chemical industry for pipeline needs.

MP (Mechanical Polished): MP denotes a stainless steel seamless tube that undergoes mechanical polishing after annealing and acid pickling to achieve a bright and clean surface. This finish is primarily utilized in the pharmaceutical and food industries.

BA (Bright Annealed): BA is specific to precision-rolled stainless steel tubes. Also known as precision tubes, BA tubes skip the regular annealing and acid pickling process after semi-finished rolling. Instead, they use argon gas in a vacuum annealing furnace to remove surface oil stains generated during the rolling process, preserving the brightness of the surface without leaving an oxide layer.

These surface finishes cater to various industry requirements, offering different levels of brightness, cleanliness, and corrosion resistance based on specific applications.

Properties

Alloy 316/316L is an austenitic alloy and similar to 304/304L is used in a wide range of applications. It is an important alloy when it comes to chloride environments and many other chemical process industries. The addition of Molybdenum significantly increases general corrosion resistance as compared to 304/304L and more importantly, increases the chloride pitting resistance.

316/316L has excellent forming and welding characteristics. Due to its superior chloride pitting resistance, it is commonly used in applications involving chlorides or halides. That property is also useful in marine environments.

It also has an excellent resistance to intergranular corrosion in as-welded condition. Dual grade becomes important if heavy gauge welding is performed. This is where intergranular corrosion comes into picture and having a lower carbon version makes it difficult for Chromium Carbide to precipitate in the 797 to 1580 degF (425 to 860 degC) range when the welding is going on for a long time due to the heavy gauge.

It has excellent creep and rupture strength at higher temperatures compared to 304/304L. Finally, it has excellent strength and toughness at cryogenic temperatures.

Applications

Very wide ranging. It is practically used almost everywhere:

In addition, it provides excellent elevated temperature tensile, creep and stress-rupture strengths.

Chemcial Composition - 316/316L stainless steel tubing and pipe

Grade 316 316L
UNS Designation S31600 S31603
Carbon (C) Max. 0.08 0.030*
Manganese (Mn) Max. 2.00 2.00
Phosphorous (P) Max. 0.045 0.045
Sulphur (S) Max. 0.030 0.030
Silicon (Si) Max. 1.00 1.00
Chromium (Cr) 16.0 – 18.0 16.0 – 18.0
Nickel (Ni) 10.0 – 14.0 10.0 – 14.0
Molybdenum (Mo) 2.0 – 3.0 2.0 – 3.0
Nitrogen (N)
Iron (Fe) Bal. Bal.
Other Elements
316L PMI test

The main constituents of 316 stainless steel - other than iron - are Chromium and Nickel. However, it is the addition of 2% Molybdenum that provides the increased corrosion resistance.

316 contains 16 - 18% Chromium (Cr). Chromium is the essential chemical in all stainless steel and it is that which forms the thin passive layer that makes the metal "stainless"

316 also contains 10-14% Nickel (Ni). This is added to make the Austenitic structure more stable at normal temperatures. 

The nickel also improves high-temperature oxidation resistance makes the steel resistant to stress corrosion cracking.

Where the steel is to be stretched formed a lower percentage (8%) of nickel should be selected. If the steel is to be deep drawn a higher percentage is better (9% or more).

In addition a number of other chemicals may be present but these are expressed as maximum permited levels with the exception of the increased quantity of carbon required in 316H - i.e. a minimum of .04% and a maximum of 0.10%

Electrical Properties

Electrical Resistivity

7.2e-005 ohm-cm

7.2e-005 ohm-cm

at 20°C (68°F); 1.16E-04 at 650°C (1200°F)

Magnetic Permeability

1.008

1.008

at RT

Typical Mechanical Properties- Stainless Steel 316/316L

Material Form Tensile Strength
(ksi)
Yield Strength
(ksi)
Elongation
%
Hardness
HB
Alloy 316L 316L Sheet AMS 5507 100 max - 45

-

Alloy 316 316 Sheet AMS 5524 75 min 30 45 207 max

Physical Properties - 316/316L/316H stainless steel in the Annealed Condition at -20°F to +100°F

Alloy UNS Design
-ation
Spec. Tensile Strength Yield Strength
psi MPa ksi psi MPa ksi Elongation in 2 inches (min.) % Grain Size Req. Max. Hardness Modulus of Elasticity (x106 psi) Mean Coefficient of Thermal Expansion (IN./IN./°F x 10-6) Thermal
Conductivity
(BTU-in/ft2-h-°F)
316 S31600 A249, A312 75,000 515 75 30,000 205 30 35 90 Rb 28.0 9.2 116
316L S31603 A270, A312 70,000 485 70 25,000 170 25 90 Rb 28.0 9.2 116
316H S31609 7 or coarser

Product Range - 316/316L Stainles steel

Alloy UNS Designation Werkstoff NR. Specifications*
316 S31600 1.4401 A269, A/SA249, A/SA312, A1016, A632, A/SA688
316L** S31603 1.4404 A269, A/SA249, A/SA312, A1016, A632, A/SA688

*Note: The specifications noted including ASTM, ASME, or other applicable authorities are correct at the time of publication. Other specifications may apply for use of these materials in different applications.

Typical Applications - Stainless Steel 316/316L

Tensile Requirements - Stainless Steel 316/316L

Tensile Strength (KSI): 70

Yield Strength (KSI): 25

KSI can be converted to MPA (Megapascals) by multiplying by 6.895.

316L

Type 316L is the low carbon version of 316 stainless. With the addition of molybdenum, the steel is popular for use in severe corrosion environments due to the materials immunity from boundary carbide precipitation (sensitisation).

The material is widely used in heavy gauge welded components and weld annealing is only required where the material is for use in high stress environments. 316L has an extensive variety of uses especially in marine applications due to the materials high corrosion resistance.

Benefits of using Type 316L Stainless Steel

316H

Type 316H is a higher carbon variant of 316 making the steel more suitable for use in applications where elevated temperatures are present.

Stabilised Grade 316Ti offers similar qualities.

The increased carbon content delivers a greater tensile and yield strength. The austenitic structure of the material also gives this grade excellent toughness, even down to cryogenic temperatures.

Benefits of using Type 316H Stainless Steel

Related 316/316L Stainless Steel

304/304L Stainless Steel

304 Stainless is a low carbon (0.08% max) version of basic 18-8 also known as 302.

316/316L Stainless Steel

Type 316 is more resistant to atmospheric and other mild environments than Type 304.

310S Stainless Steel

310S Stainless Steel has excellent resistance to oxidation under constant temperatures to 2000°F.

317L Stainless Steel

317L is a molybdenum bearing austenitic chromium nickel steel similar to type 316, except the alloy content in 317L is somewhat higher.

321/321H Stainless Steel

Alloy 321 (UNS S32100) is a titanium stabilized austenitic stainless steel with good general corrosion resistance.

Stainless Steel 410

Type 410 is a martensitic stainless steel which is magnetic, resists corrosion in mild environents and has fairly good ductility.

SA213 TP347H Stainless Steel

ASTM A213 ASME SA-213 TP347H Seamless Steel Tubes contains NB-Cr-Ni austenitic stainless steel.

Duplex 2205 (UNS S31803)

Duplex 2205 (UNS S31803), or Avesta Sheffield 2205 is a ferritic-austenitic stainless steel.

Duplex 2507 (UNS S32750)

Duplex 2507 (UNS S32750) is a super duplex stainless steel with 25% chromium, 4% molybdenum..

Super Duplex UNS S32760

Material to UNS S32760 is described as a super duplex stainless steel with a microstructure of 50:50 austenite and ferrite.

SA 269 Stainless Steel

ASTM A269 / A269M Standard Specification for Seamless and Welded Austenitic Stainless Steel Tubing for General Service

SA 249 Stainless Steel

ASME SA 249 Standard Specification for Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser Tubes.

904L stainless steel

904L stainless steel consists of chromium, nickel, molybdenum and copper contents, these elements give type 904L...

06Cr19Ni10 stainless steel

06Cr19Ni10 stainless steel is a grade of stainless steel produced in accordance with the American ASTM standard.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.

Ni-Hard Wearback Pipes Ni-Hard Wearback Pipes
//右侧淡出对话框