317L Stainless Steel

317L is a molybdenum bearing austenitic chromium nickel steel similar to type 316, except the alloy content in 317L is somewhat higher.

These tubes are commonly used in heat exchangers, condensers, and other applications where efficient heat transfer is required.

Titanium Alloy U Bent Tube

Stainless 317 L has a high tensile and creep strength at elevated temperatures. Due to its excellent corrosion resistance it has been used in handling many of the chemicals used by the chemical process industries.

It has a supperior corrosion resistance in special applications where it is desired to reduce contamination to a minimum. 317L was developed primarily to resist more effectively the attack of sulfurous acid compounds. Howerver, its proven ability to combat corrosion has widened its use considerably and is now being used for many other industrial applications.

The low carbon content of 317L provides immunity to intergranular corrosion in applications where heavy cross sections cannot be annealed after welding or where low temperature stress relieving treatments are desired.

Specifications - Stainless Steel 317L

317L (00Cr19Ni13Mo3, SUS317L) alloy is based on molybdenum and austenitic stainless steel. It is more resistant to chemical corrosion than normal chrome-nickel austenitic stainless steel, such as 304 alloys. In addition, compared with conventional stainless steel, 317L alloys have higher ductility, anti-stress corrosion, compressive strength and high temperature resistance. It is a low carbon grade or L rating, which has the ability to resist sensitization during welding and heat treatment.

Chemical Composition - Stainless Steel 317/317L

Grade 317 317L
UNS Designation S31700 S31703
Carbon (C) Max. 0.08 0.035*
Manganese (Mn) Max. 2.00 2.00
Phosphorous (P) Max. 0.040 0.04
Sulphur (S) Max. 0.03 0.03
Silicon (Si) Max. 1.00 1.00
Chromium (Cr) 18.0–20.0 18.0–20.0
Nickel (Ni) 11.0–14.0 11.0–15.0
Molybdenum (Mo) 3.0–4.0 3.0–4.0
Nitrogen (N)
Iron (Fe) Bal. Bal.
Other Elements

Typical Mechanical Properties- Stainless Steel 317L

Material Ultimate Tensile Strength (Mpa) 0.2 % Yield Strength (Mpa)
% Elongation in 2" Rockwell B Hardness
Alloy 317 515 205 35 95
Alloy 317L 515 205 40 95
Minimum Mechanical Properties by ASTM A240 and ASME SA 240

Design Features - Stainless Steel 317L

Typical Applications - Stainless Steel 317L

Tensile Requirements - Stainless Steel 317L

317L(1.4438) General Property

Alloy 317LMN and 317L are molybdenum-bearing austenitic stainless steel tube with greatly increased resistance to chemical attack as compared to the conventional chromium-nickel austenitic stainless steel pipe such as Alloy 304. In addition, 317LMN and 317L alloys offer higher creep, stress-to-rupture, and tensile strengths at elevated temperatures than conventional stainless steels. All are low carbon or "L" grades to provide resistance to sensitization during welding and other thermal processes.

The "M" and "N" designations indicate that the compositions contain increased levels of molybdenum and nitrogen respectively. The combination of molybdenum and nitrogen is particularly effective in enhancing resistance to pitting and crevice corrosion, especially in process streams containing acids, chlorides, and sulfur compounds at elevated temperatures. Nitrogen also serves to increase the strength of these alloys. Both alloys are intended for severe service conditions such as flue gas desulfurization (FGD) systems.

In addition to excellent corrosion resistance and strength properties, the Alloys 316, 316L, and 317L Cr-Ni-Mo alloys also provide the excellent fabricability and formability which are typical of the austenitic stainless steel tubing .

317L (1.4438) Heat Treatment

Annealing

The austenitic stainless steel pipe are provided in the mill annealed condition ready for use. Heat treatment may be necessary during or after fabrication to remove the effects of cold forming or to dissolve precipitated chromium carbides resulting from thermal exposures. For the Alloys 316 and 317L the solution anneal is accomplished by heating in the 1900 to 2150°F (1040 to 1175°C) temperature range followed by air cooling or a water quench, depending on section thickness. Cooling should be sufficiently rapid through the 1500 to 800°F (816 to 427°C) range to avoid reprecipitation of chromium carbides and provide optimum corrosion resistance. In every case, the metal should be cooled from the annealing temperature to black heat in less than three minutes.

Forging

The recommended initial temperature range is 2100-2200°F (1150-1205°C) with a finishing range of 1700-1750°F (927-955°C).

Annealing

317LMN and Alloy 317L stainless steels can be annealed in the temperature range 1975-2150°F (1080-1175°C) followed by an air cool or water quench, depending on thickness. Plates should be annealed between 2100°F (1150°C) and 2150°F (1175°C). The metal should be cooled from the annealing temperature (from red/white to black) in less than three minutes.

Hardenability

304/304L Stainless Steel

304 Stainless is a low carbon (0.08% max) version of basic 18-8 also known as 302.

316/316L Stainless Steel

Type 316 is more resistant to atmospheric and other mild environments than Type 304.

310S Stainless Steel

310S Stainless Steel has excellent resistance to oxidation under constant temperatures to 2000°F.

317L Stainless Steel

317L is a molybdenum bearing austenitic chromium nickel steel similar to type 316, except the alloy content in 317L is somewhat higher.

321/321H Stainless Steel

Alloy 321 (UNS S32100) is a titanium stabilized austenitic stainless steel with good general corrosion resistance.

Stainless Steel 410

Type 410 is a martensitic stainless steel which is magnetic, resists corrosion in mild environents and has fairly good ductility.

SA213 TP347H Stainless Steel

ASTM A213 ASME SA-213 TP347H Seamless Steel Tubes contains NB-Cr-Ni austenitic stainless steel.

Duplex 2205 (UNS S31803)

Duplex 2205 (UNS S31803), or Avesta Sheffield 2205 is a ferritic-austenitic stainless steel.

Duplex 2507 (UNS S32750)

Duplex 2507 (UNS S32750) is a super duplex stainless steel with 25% chromium, 4% molybdenum..

Super Duplex UNS S32760

Material to UNS S32760 is described as a super duplex stainless steel with a microstructure of 50:50 austenite and ferrite.

SA 269 Stainless Steel

ASTM A269 / A269M Standard Specification for Seamless and Welded Austenitic Stainless Steel Tubing for General Service

SA 249 Stainless Steel

ASME SA 249 Standard Specification for Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser Tubes.

904L stainless steel

904L stainless steel consists of chromium, nickel, molybdenum and copper contents, these elements give type 904L...

06Cr19Ni10 stainless steel

06Cr19Ni10 stainless steel is a grade of stainless steel produced in accordance with the American ASTM standard.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.

Ni-Hard Wearback Pipes Ni-Hard Wearback Pipes
//右侧淡出对话框