304 Stainless Snap Rings

304 stainless snap rings are used in conjunction with boiler tube erosion shields, which is a clip that easily installs boiler tube erosion shields to the tube.

Download PDF
304 Stainless Snap Rings

Stainless 1Cr25Ni20Si2 tube shields are made of 1Cr25Ni20Si2 stainless steel and can be customized to fit perfectly straight sections, curved sections and even finned and Specialty tubes.

304 stainless snap rings are used in conjunction with boiler tube erosion shields, which is a clip that easily installs boiler tube erosion shields to the tube.

304 Stainless is a low carbon (0.08% max) version of basic 18-8 also known as 302. Type 302 has 18% chromium and 8% nickel.

ASTM A213 TP304 Stainless Steel Seamless Tube is manufactured by seamless process used in high pressure environment, stainless steel TP304 grade is the most used material due to its high strength and excellent corrosion resistance.

304 stainless tube shields raw material
304 stainless tube shields raw material

304 contains 18 - 20% Chromium (Cr). Chromium is the essential chemical in all stainless steel and it is that which forms the thin passive layer that makes the metal "stainless"

304 also contains 8-10.5% Nickel (Ni). This is added to make the Austenitic structure more stable at normal temperatures. 

The nickel also improves high-temperature oxidation resistance makes the steel resistant to stress corrosion cracking.

Where the steel is to be stretched formed a lower percentage (8%) of nickel should be selected. If the steel is to be deep drawn a higher percentage is better (9% or more).

In addition a number of other chemicals may be present but these are expressed as maximum permited levels with the exception of the increased quantity of carbon required in 304H - i.e. a minimum of .04% and a maximum of 0.10%

*Maximum carbon content of 0.04% acceptable for drawn tubes


What’s the Difference Between Grade 304 ,304L & 304H Stainless Steel?

There are hundreds of different grades of stainless steel on the market. Each of these unique formulations of stainless steel offer some degree of corrosion resistance above and beyond that of plain steel.

The existence of these stainless steel variants can cause some confusion—especially when the names & formulations of two stainless steel alloys are almost the same. This is the case with grade 304 and 304L stainless steel.

Chemical Composition - Stainless Steel 304/304L

Element Percentage by Weight Maximum Unless Range is Specified
304 304L 304H
Carbon 0.08 0.030 0.04-0.10
Manganese 2.00 2.00 2.00
Phosphorus 0.045 0.045 0.045
Sulfur 0.030 0.030 0.030
Silicon 0.75 0.75 0.75
Chromium 18.00
20.00
18.00
20.00
18.00
20.00
Nickel 8.0
10.50
8.0
12.00
8.0
10.5
Nitrogen 0.10 0.10 0.10

These three alloys are remarkably similar—but there is one key difference. In grade 304 stainless, the maximum carbon content is set at 0.08%, whereas grade 304L stainless steel has a maximum carbon content of 0.03%. The “L” in 304L can be interpreted as meaning extra-low carbon.

This difference of 0.05% carbon content produces a slight, but marked, difference in the performances of the two alloys.

The Mechanical Difference

Grade 304L has a slight, but noticeable, reduction in key mechanical performance characteristics compared to the “standard” grade 304 stainless steel alloy.

Typical Mechanical Properties-Stainless Steel 304/304L

Grade Tensile Strength Rm N/mm²
Yield Strength Rp 0.2, N/mm² Elongation (%)
304 Annealed 500-700 195 40
304L Annealed 460-680 180 40

Physical Properties

Data  Metric English
Density 8 g/cc 0.289 lb/in³

Mechanical Properties

Hardness, Brinell 123 123 Converted from Rockwell B hardness.
Hardness, Knoop 138 138 Converted from Rockwell B hardness.
Hardness, Rockwell B 70 70  
Hardness, Vickers 129 129 Converted from Rockwell B hardness.
Tensile Strength, Ultimate 505 MPa 73200 psi  
Tensile Strength, Yield 215 MPa 31200 psi at 0.2% offset
Elongation at Break 70 % 70 % in 50 mm
Modulus of Elasticity 193 - 200 GPa 28000 - 29000 ksi  
Poissons Ratio 0.29 0.29  
Charpy Impact 325 J 240 ft-lb  
Shear Modulus 86 GPa 12500 ksi  

Electrical Properties

Electrical Resistivity 7.2e-005 ohm-cm 7.2e-005 ohm-cm at 20°C (68°F); 1.16E-04 at 650°C (1200°F)
Magnetic Permeability 1.008 1.008 at RT

Thermal Properties

Design Features - Stainless Steel 304/304L

Typical Applications - Stainless Steel 304/304L

Tensile Requirements - Stainless Steel 304/304L

Each alloy represents an excellent combination of corrosion resistance and fabricability. This combination of properties is the reason for the extensive use of these alloys which represent nearly one half of the total U.S. stainless steel production. The 18-8 stainless steels, principally Alloys 304, 304L, and 304H, are available in a wide range of product forms including sheet, strip, and plate. The alloys are covered by a variety of specifications and codes relating to, or regulating, construction or use of equipment manufactured from these alloys for specific conditions. Food and beverage, sanitary, cryogenic, and pressure-containing applications are examples.

Alloy 304 is the standard alloy since AOD technology has made lower carbon levels more easily attainable and economical. Alloy 304L is used for welded products which might be exposed to conditions which could cause intergranular corrosion in service.

Alloy 304H is a modification of Alloy 304 in which the carbon content is controlled to a range of 0.04-0.10 to provide improved high temperature strength to parts exposed to temperatures above 800°F.

For example, the ultimate tensile strength (UTS) of 304L is roughly 85 ksi (~586 MPa), less than the UTS of standard grade 304 stainless, which is 90 ksi (~620 MPa). The difference in yield strength is slightly greater, with 304 SS having a 0.2% yield strength of 42 ksi (~289 MPa) and 304L having a 0.2% yield strength of 35 ksi (~241 MPa).

This means that if you had two steel wire baskets and both baskets had the exact same design, wire thickness, and construction, the basket made from 304L would be structurally weaker than the standard 304 basket.

Why Would You Want to Use 304L, Then?

So, if 304L is weaker than standard 304 stainless steel, why would anyone want to use it?

The answer is that the 304L alloy’s lower carbon content helps minimize/eliminate carbide precipitation during the welding process. This allows 304L stainless steel to be used in the “as-welded” state, even in severe corrosive environments.

If you were to use standard 304 stainless in the same way, it would degrade much faster at the weld joints.

Basically, using 304L eliminates the need to anneal weld joints prior to using the completed metal form—saving time and effort.

In practice, both 304 and 304L can be used for many of the same applications. The differences are often minor enough that one isn’t considered massively more useful over the other. When stronger corrosion resistance is needed, other alloys, such as grade 316 stainless steel, are usually considered as an alternative.

ASTM A213 / ASME SA213

ASTM A213 / ASME SA213 is a America specification for stainless steel boiler, super heater, heat exchanger tubes, executed by most world stainless steel seamless tubes mills and factories, minimum wall thickness required in A213 seamless tube, or average wall thickness as customers requirement, tight tolerance of outside and wall thickness stated as A213 standard or A1016


Cold Rolled Commercial Steel Vs. 304 Stainless Steel

Cold rolling steel is a method that is used to provide a dense, dimensionally precise piece of steel. The most commonly used grade of stainless steel is 304. All stainless steels are a specific alloy mix.

Cold Rolled Steel

Cold rolled steel, also called CRS, is a process used to finish steel. Hot rolled steel is steel that is still warm enough to be malleable and run through pressure rollers. After cleaning, when the steel has cooled and is no longer elastic, the steel is then put through power rollers and cold rolled. This produces a product that has a fine, smooth finish.

304 Stainless Steel

The most commonly used grade of stainless steel is 304. Another name for 304 is 18/8 because it is 18 percent chromium and 8 percent nickel. These additions make it resistant to corrosion.

CRS vs. 304 Stainless Steel

The difference between CRS and 304 stainless steel is that CRS is a process and 304 is an alloy. Steel, hot or cold rolled, will rust and corrode. It is used in applications where that is not a consideration. Stainless steel is an alloy with chromium and nickel that prevents rust and corrosion. It is used where rust and corrosion will be a problem. It is possible to buy 304 cold rolled stainless steel.


Advantages of Stainless Steel 304 Pipes

Strength

Stainless Steel is a chromium-based alloy known for its incredible anti-rust properties. But along with this, Stainless Steel alloys are also used due to their incredible strength. Stainless Steel 304 has incredible strength and durability. Its strength is one of the most sought-after traits of grade 304 SS. Stainless Steel 304L Pipes and 304 Pipes are solid and retain their strength at extreme temperatures.

Sanitization

Stainless Steel 304, 304 L, and almost every grade of Stainless Steel is brilliant at repelling corrosion. As a result of this property, Stainless Steel grade 304 Pipes also have the property of repelling the growth and spread of microbes and dirt on the surface of the Pipes. Hence, it is often used in applications that have a primary need for sanitization and monitoring cleanliness. Additionally, Stainless Steel 304 Pipes are incredibly easy to maintain. They can be cleaned very easily. Hence, Stainless Steel 304 Pipes are used at hospitals, kitchens, food processing localities, etc., where cleanliness is a requisite.

Corrosion Resistance

AS its name suggests, Stainless Steel is a material that prohibits rusting and corrosion even in extreme temperature and weather conditions, including high-pressure areas. The chromium present in stainless Steel reacts with oxygen to create a chromium oxide film or layer that settles on the surface of the metal. This layer is what protects the Pipes from corroding. It is a self-reparatory layer that does not require maintenance or refurbishing.

But what sets grade 304 apart is the addition of molybdenum to the alloying composition making it an austenitic grade of stainless Steel. Austenitic Steel has enhanced corrosion resistance. Hence, for applications in extreme conditions, Stainless Steel 304 Pipes are an ideal choice.

Recyclability

Stainless Steel 304 Pipes are entirely recyclable. Once its utility purposes have been outlived or fulfilled, it can be recycled and re-forged. When stainless Steel is recycled, it does not lose any of its properties. All of its chemical, physical, and mechanical properties remain intact. About 70% of existing Stainless Steel artifacts are made out of recycled material.

Durability

Even though Stainless Steel 304 Pipes are lightweight, they are solid. They won’t succumb to external weights and pressure. Hence, it is said that it is one of the most durable materials. Stainless Steel 304 Pipes can withstand extreme temperatures as well as extreme pressures.

Related 304 Stainless Snap Rings

Snap rings for tubes erosion shields

Snap rings are used in conjunction with boiler tubes erosion shields, which is a clip that easily installs boiler tubes erosion shields to the tube.

Snap rings drawing

The snap ring and Boiler Tubes Erosion Shields are overlapped and welded, generally about 190-200 degrees Erosion Shields is a 180-degree semicircle), but also leave a welding position for easy welding and fixing. Generally, each piece of Boiler Tubes Erosion Shields needs to be equipped with 2-4 snap rings with a pitch of 200-500mm.

The anti-wear snap ring is also called clamp, buckle, tube clamp, etc.

The main role of the anti-wear tile snap ring: the role of fixing the anti-wear tile to avoid problems such as the anti-wear tile falling off during installation.

The types of common anti-wear tile rings can be divided into: U-shaped lap type snap ring, butt-type semicircular snap ring.

U-Shaped Snap Ring

U-Shaped Snap Ring

The inner diameter of the U-shaped snap ring is the outer diameter of the wear-resistant tile plus the thickness of the wear-resistant tile, and the length varies from 20mm to 70mm. It will be 5mm more in semicircle. The extra part during installation will hold the wear-resistant tile and then spot weld. Compared with the butt-type semicircular snap ring, it is stronger after holding the wear-resistant tile and welding.

C-Shaped Snap Ring

C-shaped snap ring

C-shaped snap ring is the most common snap ring. Mainly based on the size of anti-friction tile, the diameter and thickness are similar to the matching anti-friction tile, and the length varies from 20mm to 70mm. It is mainly connected to the wear-resistant tile by spot welding when installing the wear-resistant tile, so as to fix and prevent the wear-resistant tile from falling off.

Custom Clips

Custom snap ring

Custom snap rings are the recommended method for tube shield attachment.

  • Style: Bull, Overlap, Wrap
  • Tube Diameter: 0.500" to 5.000" (Tube OD is shield ID), XML
  • Angle of Wrap: Maximum 240° XML
  • Gauge: 7 to 24 XML
  • Material: 304 SS, 316 SS, 309 SS, 310 SS, 430 SS, Inconel

All products are purchased to proprietary customized specifications as well as normal industry standards with supporting documentation.

Pipe covering protection shield

Pipe covering protection shield

Material

Different types of stainless steel are selected according to the specific conditions of different working conditions.

Common materials are: TP321 (Cr18Ni9Ti), TP309S (Cr23Ni13), 1Cr20Ni14Si2, TP310S (Cr25Ni20), 1Cr25Ni20Si2, and some low temperature areas (such as low temperature superheater, low temperature reheater) are made of 1Cr13, 1Cr6Si2Mo and other materials.

The boiler was originally designed to be accurate. Different materials have different temperature resistance and mechanical strength. 1Cr13, 1Cr6Si2Mo generally has a temperature resistance of 600 ℃ or less.

Main material of tube erosion shields

Material(Grade) Temperature resistance Yield strength Tensile strength Elongation HB HRB HV
1Cr18Ni9Ti 925 ℃ ≥205MPa ≥520MPa ≥40% ≤187 ≤90 ≤200
Cr23Ni13 1095 ℃ ≥205MPa ≥520MPa ≥40% ≤187 ≤90 ≤200
1Cr20Ni14Si2 1095 ℃ --- ≥590MPa ≥40% --- --- ---
Cr25Ni20 1150 ℃ ≥205MPa ≥520MPa ≥40% ≤187 ≤90 ≤200
1Cr25Ni20Si2 1150 ℃ --- ≥540MPa ≥35% --- --- ---

We can also supply boiler tubes erosion shields of other materials.

Install erosion shield with snap ring

Install erosion shield with snap ring

Installation

Generally, boiler tubes erosion shields are also installed to prevent further wear of the tubes and cause serious consequences such as boiler explosion.

The main role is to protect the heating surface of the boiler pipes, reduce pipeline wear, and increase the heating surface of the pipes.

The snap ring is a short section that is installed on the pipe in conjunction with the wear-resistant tile. Generally, it is welded to the wear-resistant tile by lap welding, that is, to cover the wear-resistant tile slightly, so it is larger than the wear-resistant tile. The opening arc is around 190-200 degrees, the welding position needs to be set aside to facilitate welding and fixing. The width of the snap ring must not be less than 20mm.

The installation requirements of anti-friction tiles of different shapes are slightly different. Basically, each anti-friction tile is installed with not less than 2-4 snap rings. The snap ring and the anti-friction tile are welded together to prevent expansion due to heat. The tiles fall off, and the joints are required to be fully welded.

Packing

Generally, boiler tubes erosion shields are also installed to prevent further wear of the tubes and cause serious consequences such as boiler explosion.

The main role is to protect the heating surface of the boiler pipes, reduce pipeline wear, and increase the heating surface of the pipes.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.