Bearing pipe is a kind of seamless steel pipe by hot-rolled or cold-rolled ( cold drawn ), used for the manufacture of ordinary bearing rings.
The outer diameter of pipe is usually 25-180 mm and with wall thickness of 3.5-20 mm.
Introduction Bearing steel pipe is a sort of hot-rolled or cold-rolled (cold-drawn) seamless steel tube. Salvaging used for producing general antifriction bearing ferrule. The side diameter is 25 mm to 180 mm along with the thickness is between3.5 to twenty mm.
We mainly provide general precision and high precision bearing steel pipes.
ASTM A295 specification covers high-carbon bearing-quality steel to be used in the manufacture of anti-friction bearings. The most common steel grade in ASTM A295 standard is 52100.
Country | USA | German | Japan | British |
Standard | ASTM A295 | DIN 17230 | JIS G4805 | BS 970 |
Grades | 52100 | 100Cr6/1.3505 | SUJ2 | 535A99/EN31 |
Standard | Grade | C | Mn | P | S | Si | Ni | Cr | Cu | Mo |
ASTM A295 | 52100 | 0.93-1.05 | 0.25-0.45 | 0.025 | 0.015 | 0.15-0.35 | 0.25 | 1.35-1.60 | 0.3 | 0.1 |
DIN 17230 | 100Cr6/1.3505 | 0.90-1.05 | 0.25-0.45 | 0.03 | 0.025 | 0.15-0.35 | 0.3 | 1.35-1.65 | 0.3 | – |
JIS G4805 | SUJ2 | 0.95-1.10 | 0.5 | 0.025 | 0.025 | 0.15-0.35 | – | 1.30-1.60 | – | – |
BS 970 | 535A99/EN31 | 0.95-1.10 | 0.40-0.70 | – | – | 0.10-0.35 | – | 1.20-1.60 | – | – |
Properties | Metric | Imperial |
Bulk modulus (typical for steel) | 140 GPa | 20300 ksi |
Shear modulus (typical for steel) | 80 GPa | 11600 ksi |
Elastic modulus | 190-210 GPa | 27557-30458 ksi |
Poisson’s ratio | 0.27-0.30 | 0.27-0.30 |
Hardness, Brinell | – | – |
Hardness, Knoop (converted from Rockwell C hardness) | 875 | 875 |
Hardness, Rockwell C (quenched in oil from 150°C tempered) | 62 | 62 |
Hardness, Rockwell C (quenched in water from 150°C tempered) | 64 | 64 |
Hardness, Rockwell C (quenched in oil) | 64 | 64 |
Hardness, Rockwell C (quenched in water) | 66 | 66 |
Hardness, Vickers (converted from Rockwell C hardness) | 848 | 848 |
Machinability (spheroidized annealed and cold drawn. Based on 100 machinability for AISI 1212 steel) | 40 | 40 |
Properties | Metric | Imperial |
Density | 7.81 g/cm3 | 0.282 lb/in³ |
Melting point | 1424°C | 2595°F |
Properties | Metric | Imperial |
---|---|---|
Thermal expansion co-efficient (@ 23-280°C/73.4- 36°F, annealed) | 11.9 µm/m°C | 6.61 µin/in°F |
Thermal conductivity (typical steel) | 46.6 W/mK | 323 BTU in/hr.ft².°F |
AISI 52100 alloy steel is forged at 927 to 1205°C, and should not be forged below 925ºC. A post-forge equalization treatment is recommended at 745ºC for 4-6 hours followed by air cooling for SAE/AISI 52100 steel.
Bearing steel is used to make ball, roller and bearing rings of steel. Bearings work under immense pressure and friction, it requires a high and uniform bearing steel hardness and wear resistance, and a high elastic limit. Bearing steel chemical composition uniformity, non-metallic inclusion content and distribution, the distribution of carbides and other requirements are very stringent requirements of all steel production in one of the most demanding steel grades.
Bearing steel has a high smelting quality requirements, meanwhile, and requires strict control of sulfur, phosphorus, hydrogen content, and non-metallic inclusions and carbides of the number, size and distribution, non-metallic inclusions and carbides as the number, size and distribution service life of the bearing steel great influence, often bearing failure is in large carbide inclusions or micro-cracks generated around the extension to.
Inclusions content and oxygen content in steel is closely related to the higher oxygen content, the more the number of inclusions, the shorter life expectancy.
And carbide inclusions larger particle size, more uniform distribution, the shorter the service life, and their size , distribution and use of the smelting process and the smelting quality is closely related to, now bearing steel production as well as the main process is the continuous casting EAF + ESR smelting process, as well as a small amount of vacuum induction vacuum arc double vacuum or + repeatedly vacuum consumable and other technology to improve the quality of bearing steel.
Since the bearing should have a long life, high precision, low heat, high speed, high rigidity, low noise, high wear resistance and other characteristics, thus requiring the bearing pipe should have: high hardness, uniform hardness, high elastic limit, high contact fatigue strength, must toughness, hardenability must be in atmospheric corrosion resistance of the lubricant. To achieve these performance requirements, the chemical composition of steel bearings homogeneity, non-metallic inclusion content and type, size and distribution of carbides, decarburization demanding. Overall bearing steel to high-quality, high performance and multi-species direction. Bearing steel according to characteristics and application environments are divided into: high carbon chromium bearing steel, carburizing bearing steel, high temperature bearing steel, stainless steel and special bearing special bearing materials. To meet the high-temperature, high-speed, high load, corrosion, anti-radiation requirements, need to develop a series of special performance of the new bearing steel. In order to reduce the oxygen content of bearing steel, the development of vacuum smelting, electroslag remelting, electron beam remelting bearing steel smelting technology.
The large quantities of bearing steel smelting by the arc melting, to develop into all types of early Canadian refining furnace.
Steel Grade | Standard | Application | |||
GB(China) | ASME(USA) | DIN/EN(Euro) | JIS(Jpan) | ||
Carbon steel | 10 20 20G 20MnG 25MnG Q345B/C/D/E |
A106 SA-106B SA-106C SA-192 SA-210A1 SA-210C |
St35.8 St45.8 P235GH P265GH |
STB340 STB410 STB510 |
Economizer tube Water wall tube, pipeline, header pipe, Petrochemical furnace tube, heat exchange tube |
Mo steel | 15MoG 20MoG |
SA-209 T1 SA-209 T1a SA-209 T1b |
16Mo3 | 15Mo3 16Mo3 |
Water wall tube Superheater tube Reheater tube |
Cr-Mo Steel Cr-Mo-V steel |
12Cr1MoG 12Cr2MoWVTiB |
12Cr1MoV 14MoV63 |
Superheater tube Reheater tube, Pipeline, Header pipe, Petrochemical furnace tube, Heat exchange tube |
||
Cr-Mo-Steel Cr-Mo-W Steel Cr-Mo Steel Cr-Mo-W steel |
12CrMoG 15CrMoG 12Cr2MoG 10Cr9Mo1VNbN 10Cr9MoW2VNbBN 12Cr1Mo 12Cr5Mol/NT 12Cr9Mol/NT |
T11/P11 T12/P12 T22/P22 T23/P23 T24/P24 T5/P5 T9/P9 T91/P91 T92/P92 |
10CrMo5-5 12CrMo4-5 10CrMo9-10 7CrWVMoNb9-6 7CrMoVTIB10-10 X10CrMoVNb9-1 X10CrWMoVNb9-2 X11CrMo5+l/NT X11CrMo9-1+l/NT |
STB20 STB22 STB23 STB24 STB25 STB26 |
Superheater tube, Reheater tube, Main steam pipe, Pipleline, Header pip, Petrochemical furnace tube, Heat exchange tube |
Carbon steel Ni steel |
16MnDG 10MnDG 09DG |
A333-1 SA-333-1 A333-6 SA-333-6 A333-3 SA-333-3 |
STPL380 STPL450 |
Tube & pipe for Low-temperature service | |
Austentic Stainless steel | --- | AP304 TP304H TP321 TP321H TP347 TP347H TP316 TP316H S30432 TP310HCbN |
--- | Superheater tube Reheater tube |
Pipe types | Pipe Szie(mm) | Tolerances | |
Hot rolled | OD | <50 | ±0.50mm |
≥50 | ±1% | ||
WT | <4 | ±12.5% | |
≥4-20 | +15%, -12.5% | ||
>20 | ±12.5% | ||
Cold drawn | OD | 6-10 | ±0.20mm |
10-30 | ±0.40mm | ||
30-50 | ±0.45 | ||
>50 | ±1% | ||
WT | <1 | ±0.15mm | |
>1-3 | + 15%, – 10% | ||
>3 | + 12.5%, – 10% |
For pipe over 10 inches as a special OD tolerance pipe, the OD shall within vary +1% /-1%.
Standard | Hot finished seamless tube | Cold flnished seamless tube | ||
Out diameter (mm) |
Tolerance | Out diameter (mm) | Tolerance | |
---|---|---|---|---|
EN10216-1 EN10216-2 DIN17175 |
≤100 | +/-0.75% (min.+/-0.5mm) |
All | +/-0.5% (min. +/-0.30mm) |
>100 | +/-0.90% | |||
GB/T 3087 | ≤460 | +/-0.75% (min.+/-0.5mm) |
10-30 | +/-0.40mm |
>30-50 | +/-0.45mm | |||
>50 | +/-1.0% | |||
GB/T 5310 GB/T 9948 GB/T 6479 |
<57 | +/-0.40mm | ≤30 | +/-0.20mm |
57-325 | +/-0.75% | >30-50 | +/-0.30mm | |
>325-460 | +1%,-2mm | >50 | +/-0.8% | |
ASME SA-179M ASME SA-192M ASME SA-209M ASME SA-210M ASME SA-213M JIS G 3461 JIS G 3461 |
≤101.6 | +0.4, -0.8mm | <25.4 | +/-0.10mm |
>25.4-38.1 | +/-0.15mm | |||
>38.1-50.8 | +/-0.20mm | |||
101.6-190.5 | +0.4, -1.2mm | >50.8-63.5 | +/-0.25mm | |
>63.5-76.2 | +/-0.30mm | |||
>76.2 | +/-0.38mm | |||
ASME SA106 ASME SA335 |
≤48.3 | +/-0.40mm | ≤48.3 | +/-0.40mm |
48.3-114.3 | +/-0.79mm | |||
114.4-219.1 | +1.59, -0.79mm | |||
219.2-323.9 | +2.38, -0.79mm | >48.3 | +/-0.79mm | |
>324 | +/-1.0% |
For standard pipe, except as provided for thin-wall pipe, the tolerances of diameter shall be in accordance with the following table:
Standard | Hot finished seamless tube | Cold flnished seamless tube | ||
Out diameter (mm) |
Tolerance | Out diameter (mm) | Tolerance | |
---|---|---|---|---|
EN10216-1 EN10216-2 DIN17175 |
≤100 | +/-0.75% (min.+/-0.5mm) |
All | +/-0.5% (min. +/-0.30mm) |
>100 | +/-0.90% | |||
GB/T 3087 | ≤460 | +/-0.75% (min.+/-0.5mm) |
10-30 | +/-0.40mm |
>30-50 | +/-0.45mm | |||
>50 | +/-1.0% | |||
GB/T 5310 GB/T 9948 GB/T 6479 |
<57 | +/-0.40mm | ≤30 | +/-0.20mm |
57-325 | +/-0.75% | >30-50 | +/-0.30mm | |
>325-460 | +1%,-2mm | >50 | +/-0.8% | |
ASME SA-179M ASME SA-192M ASME SA-209M ASME SA-210M ASME SA-213M JIS G 3461 JIS G 3461 |
≤101.6 | +0.4, -0.8mm | <25.4 | +/-0.10mm |
>25.4-38.1 | +/-0.15mm | |||
>38.1-50.8 | +/-0.20mm | |||
101.6-190.5 | +0.4, -1.2mm | >50.8-63.5 | +/-0.25mm | |
>63.5-76.2 | +/-0.30mm | |||
>76.2 | +/-0.38mm | |||
ASME SA106 ASME SA335 |
≤48.3 | +/-0.40mm | ≤48.3 | +/-0.40mm |
48.3-114.3 | +/-0.79mm | |||
114.4-219.1 | +1.59, -0.79mm | |||
219.2-323.9 | +2.38, -0.79mm | >48.3 | +/-0.79mm | |
>324 | +/-1.0% |
The wall thickness at any point shall be within the below tolerance table.
Standard | Hot finished seamless tube | Cold flnished seamless tube | ||||
Out diameter OD(mm) |
Wall thickness T(mm) |
Tolerance | Out diameter (mm) |
Wall Thickness T(mm) |
Tolerance | |
---|---|---|---|---|---|---|
DIN17175 | ≤130 | S≤2Sn | +15%, -10% | -- | All | +/-10% (min. +/-0.2mm) |
2Sn<S≤4Sn | +12.5%, -10% | |||||
S>4Sn | +-/9% | |||||
>130 | S≤0.05da | +17.5%, -12.5% | ||||
0.05da<S≤0.11da | +/-12.5% | |||||
S>0.11da | +/-10% | |||||
EN 10216-1 EN 10216-2 |
≤219.1 | - | +/-12.5% (min.+/-0.4mm) |
|||
-- | T/D≤0.025 | +/-20% | ||||
0.025<T/D≤0.050 | +/-15% | |||||
0.05<T/D≤0.10 | +/-12.5% | |||||
0.1<T/D | +/-10% | |||||
GB/T 3087 | -- | ≤20 | +15%,-12.5% (min.+0.45, -0.35mm) |
-- | 1.0-3.0 | +15%, -10% |
>20 | +/-12.5% | -- | >3 | +12.5%, -10% | ||
GB/T 5310 GB/T 9948 GB/T 6479 |
-- | <4.0 | +15%,-10% (min.+0.48, -0.32mm) |
-- | 2-3 | +12%,-10% |
4-20 | +12.5%,-10% | >3 | +/-10% | |||
>20 | +/-10% | |||||
ASME SA-179M ASME SA-192M ASME SA-209M ASME SA-210M ASME SA-231M JIS G 3461 JIS G 3462 |
-- | 2.41-3.8 | +35%, -0% | ≤38.1 | -- | +20%,-0% |
3.8-4.6 | +33%,-0% | >38.1 | -- | 22%,-0% | ||
>4.6 | +28%,-0% | -- | -- | -- | ||
ASME SA-106 ASME SA-335 |
-- | All | +/12.5% | All | +/-10% |
Table 1, size for cold-drawn or cold rolled tube (Unit:mm)
W.T. O.D. |
2.5 | 3 | 3.2 | 3.5 | 4.0 | 4.5 | 5 | 5.5 | 6.5 | 7.0 | 7.5 | 8.0 | 8.5 | 9.0 | 9.5 | 10.0 | 11.0 | 12.0 | 13.0 | 14.0 | 15.0 | 16.0 |
18 | ||||||||||||||||||||||
19 | ||||||||||||||||||||||
22 | ||||||||||||||||||||||
24 | ||||||||||||||||||||||
25 | ||||||||||||||||||||||
28 | ||||||||||||||||||||||
29 | ||||||||||||||||||||||
30 | ||||||||||||||||||||||
31.8 | ||||||||||||||||||||||
35 | ||||||||||||||||||||||
38 | ||||||||||||||||||||||
40 | ||||||||||||||||||||||
42 | ||||||||||||||||||||||
45 | ||||||||||||||||||||||
48 | ||||||||||||||||||||||
50 | ||||||||||||||||||||||
51 | ||||||||||||||||||||||
54 | ||||||||||||||||||||||
57 | ||||||||||||||||||||||
60 | ||||||||||||||||||||||
63.5 | ||||||||||||||||||||||
68 | ||||||||||||||||||||||
70 | ||||||||||||||||||||||
73 | ||||||||||||||||||||||
76 | ||||||||||||||||||||||
83 | ||||||||||||||||||||||
89 | ||||||||||||||||||||||
W.T. O.D. |
2.5 | 3 | 3.2 | 3.5 | 4.0 | 4.5 | 5 | 5.5 | 6.5 | 7.0 | 7.5 | 8.0 | 9.0 | 9.5 | 10.0 | 11.0 | 12.0 | 13.0 | 14.0 | 15.0 | 16.0 |
Note:
At the request of the purchaser and specified in the purchase order, the steel tubes with other O.D. and W.T. can be produced after the review.
(Unit:mm)
W.T. O.D. |
3.2 | 3.5 | 3.6 | 4.0 | 4.5 | 5.0 | 5.5 | 5.6 | 6.0 | 7.0 | 7.1 | 7.5 | 8.0 | 8.5 | 8.8 | 9.0 | 9.5 | 10.0 | 11.0 | 12.0 | 12.5 | 13.0 | 14.0 | 14.2 | 15.0 | 16.0 | 17.0 | 17.5 | 18.0 | 19.0 | 20.0 | 22.2 | 24.0 | 25.0 | 30.0 |
31.8 | |||||||||||||||||||||||||||||||||||
33.4 | |||||||||||||||||||||||||||||||||||
35 | |||||||||||||||||||||||||||||||||||
40 | |||||||||||||||||||||||||||||||||||
42 | |||||||||||||||||||||||||||||||||||
42.4 | |||||||||||||||||||||||||||||||||||
44.5 | |||||||||||||||||||||||||||||||||||
45 | |||||||||||||||||||||||||||||||||||
48 | |||||||||||||||||||||||||||||||||||
50 | |||||||||||||||||||||||||||||||||||
51 | |||||||||||||||||||||||||||||||||||
54 | |||||||||||||||||||||||||||||||||||
57 | |||||||||||||||||||||||||||||||||||
60 | |||||||||||||||||||||||||||||||||||
63 | |||||||||||||||||||||||||||||||||||
63.5 | |||||||||||||||||||||||||||||||||||
68 | |||||||||||||||||||||||||||||||||||
70 | |||||||||||||||||||||||||||||||||||
71 | |||||||||||||||||||||||||||||||||||
73 | |||||||||||||||||||||||||||||||||||
76 | |||||||||||||||||||||||||||||||||||
82 | |||||||||||||||||||||||||||||||||||
89 | |||||||||||||||||||||||||||||||||||
95 | |||||||||||||||||||||||||||||||||||
101.6 | |||||||||||||||||||||||||||||||||||
108 | |||||||||||||||||||||||||||||||||||
114.3 | |||||||||||||||||||||||||||||||||||
121 | |||||||||||||||||||||||||||||||||||
127 | |||||||||||||||||||||||||||||||||||
133 | |||||||||||||||||||||||||||||||||||
140 | |||||||||||||||||||||||||||||||||||
146 | |||||||||||||||||||||||||||||||||||
152 | |||||||||||||||||||||||||||||||||||
159 | |||||||||||||||||||||||||||||||||||
165 | |||||||||||||||||||||||||||||||||||
168 | |||||||||||||||||||||||||||||||||||
180 |
(Unit:mm)
W.T. O.D. |
6 | 6.4 | 6.7 | 7 | 7.4 | 7.6 | 9 | 9.5 | 10 | 14 | 16 | 20 | 25 | 30 | 32 | 35 | 40 | 46 | 50 | 52 | 55 | 60 |
200.03 | ||||||||||||||||||||||
219.1 | ||||||||||||||||||||||
244.5 | ||||||||||||||||||||||
269.8 | ||||||||||||||||||||||
273 | ||||||||||||||||||||||
298.5 | ||||||||||||||||||||||
325 | ||||||||||||||||||||||
339.7 | ||||||||||||||||||||||
351 | ||||||||||||||||||||||
355.6 | ||||||||||||||||||||||
365.1 | ||||||||||||||||||||||
377 | ||||||||||||||||||||||
402 | ||||||||||||||||||||||
406.4 | ||||||||||||||||||||||
426 | ||||||||||||||||||||||
431.8 | ||||||||||||||||||||||
457 |
10MnDG is a type of seamless steel pipe that belongs to the family of high-pressure boiler tubes. It is a low-alloy steel pipe with a chemical composition that includes carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), and other trace elements.
The chemical composition of 10MnDG typically includes:
10MnDG seamless steel pipe is mainly used in the manufacture of high-pressure and ultra-high-pressure boilers and pressure vessels. The pipes are designed to withstand high-pressure and high-temperature environments, making them suitable for use in applications such as power generation, chemical processing, and oil and gas refining.
10MnDG is a reliable material with excellent mechanical properties, including high strength, toughness, and resistance to creep deformation at high temperatures. These characteristics make it an ideal choice for use in critical applications where performance and reliability are essential.
Overall, 10MnDG seamless steel pipe is an important component of industrial piping systems, providing safe and efficient means for transporting fluids at high pressures and temperatures.
16MnDG is a type of seamless steel pipe that is commonly used in the manufacturing of high-pressure vessels and boilers. It belongs to the family of low-alloy steels and has a chemical composition that includes carbon, silicon, manganese, phosphorus, sulfur, and other trace elements.
The chemical composition of 16MnDG typically includes:
16MnDG seamless steel pipe has good mechanical properties, including high strength, toughness, and resistance to creep deformation at high temperatures. These characteristics make it an excellent choice for use in high-pressure and high-temperature environments, such as in the manufacture of boilers, pressure vessels, and other equipment used in power generation and chemical processing industries.
The seamless nature of 16MnDG pipes ensures uniformity and consistency in their structure, which makes them less prone to defects or failures. This enhances their reliability and safety, providing a secure means for transporting fluids at high pressures and temperatures.
Overall, 16MnDG seamless steel pipe is an important component of industrial piping systems, providing a reliable and efficient means for transporting fluids in harsh and demanding environments.
09DG is a type of seamless steel pipe that belongs to the family of high-temperature and pressure-resistant steel pipes. It has a chemical composition that includes carbon, silicon, manganese, phosphorus, sulfur, and other trace elements.
The chemical composition of 09DG typically includes:
09DG seamless steel pipe is designed to withstand high-temperature and high-pressure conditions, making it suitable for use in the manufacture of boilers, heat exchangers, and other equipment used in the power generation and chemical processing industries.
The seamless nature of 09DG pipes ensures that they have a homogeneous and consistent structure, which reduces the likelihood of defects or failures. This enhances their safety and reliability, providing a secure means for transporting fluids under high pressures and temperatures.
09DG seamless steel pipe has excellent mechanical properties, including high strength, good toughness, and resistance to creep deformation at high temperatures. These characteristics make it an ideal material for use in critical applications where performance and reliability are essential.
Overall, 09DG seamless steel pipe is an important component of industrial piping systems, providing a reliable and efficient means for transporting fluids at high pressures and temperatures.
Cold Drawn Seamless Mechanical Tubing (CDS) is a cold drawn 1018/1026 steel tube which offers uniform tolerances, enhanced machinability and increased strength and tolerances compared to hot-rolled products.
Cold drawn steel tube is with hot-rolled steel coil as raw material, and tandem cold rolling pickled to remove oxide scale, its finished rolling hard roll, rolling hard volumes due to the continuous cold deformation caused by cold hardening strength, hardness increased indicators declined tough plastic, stamping performance will deteriorate, which can only be used for simple deformation of the parts.
Rolling hard roll can be used as the raw material of the hot-dip galvanizing plant, hot dip galvanizing line set annealing line. Rolling hard roll weight is generally 6 to 13.5 tons, the coil diameter of 610mm.
Hot-rolled seamless steel pipe production base deformation process can be summarized as three stages: perforation, extension and finishing.
The main purpose of the perforation process is to become a solid round billet piercing hollow shell. Capillary in the specifications, accuracy and surface quality can not meet the requirements of the finished product, further improvements are needed to deform the metal through. The main purpose of the stretching machine is further reduced sectional view (main compression wall) for a larger axial extension, so that the capillary improved dimensional accuracy, surface quality and organizational performance.
After stretching machine rolled steel pipe shortage collectively need further molding mill in order to achieve the requirements of the finished pipe. Rolled steel due to pass in the method widely used in the production of seamless steel tubes.
So far, due to the method pass rolling steel can be divided into two categories: core pension without rolling rolling (hollow body rolling), and with the mandrel. Sizing machines, reducing mill and stretch reducing mill belonging to the hole without mandrel type continuous rolling mills are generally coffin. Its main purpose is to reduce the diameter of the deformation process or sizing get finished steel, the wall thickness of process control, can make thinning, thickening or nearly unchanged.
All the traditional hole-type rolling machine with mandrel belong to extend machine. The main purpose is to reduce the deformation process perforated capillary wall thickness and outer diameter roll passes in the deformation zone and the mandrel posed, for a larger axial extension. At the same time a certain improvement in the organization, performance, accuracy, surface quality.
Before cutting pipe and tubing
No matter the material, measure the diameter of the pipe or tube to be cut to ensure that you use the right-size tube cutter for the job. When determining how to make a straight cut, use a tape measure and a pencil or other writing instrument to mark on the surface where you want to cut. If possible, mark around the circumference of a pipe, especially when cutting with a handsaw. Ensure that a cut is as straight as possible by securing the pipe with a vise, clamp, miter box or even duct tape to keep the length from shifting out of place while cutting.
After cutting pipe and tubing
The production equipment consists of punching machine, automatic pipe rolling machine, coiling machine, sizing machine and reducing machine. The round tube is inserted into the hollow of the thick-walled tube, and the axes of the two rollers form an oblique angle with the rolling line. In recent years, the inclination angle has increased from 6° to 12° to 13° to 17°, increasing the speed of the punch. When producing structural seamless pipe with a diameter greater than 250mm, secondary perforation is used to reduce the thickness of the hollow billet wall. New technologies have also been developed to enhance the perforation process and improve the quality of the capillary.
The production equipment includes punching machine, continuous rolling mill, and tension reduction machine. The round billet is pierced into a hollow billet, then inserted into the mandrel, and continuously rolled by 7 to 9 two-roll mills. After rolling, the mandrel bar is taken out and reheated to reduce tension. In 2014, the annual output of 140mm continuous rolling mills is 0.4 to 600,000 tons, which is 2 to 4 times that of plug mills. The characteristics of this unit are suitable for the production of steel pipes with a diameter of 168mm or less. However, the equipment investment is large, the installed capacity is large, and the processing and manufacturing are complex.
Three-roll rolling production is mainly used to produce thick-walled seamless steel pipes with high dimensional accuracy. The wall thickness accuracy of the seamless steel pipe produced by this manufacturing process can reach plus or minus 5%, and the pipe accuracy is twice that of the seamless steel pipe produced by other methods. This manufacturing technique developed rapidly with the invention of the new three-high skew rolling mill in the 1960s. The new type of rolling mill is characterized by rapidly rotating the inlet rotary rack to change the expansion angle of the tail, thereby preventing the triangle from appearing at the tail, and expanding the ratio of the outer diameter to the wall thickness of the production varieties from 12 to 35, which can not only produce thin-walled seamless welded steel pipes , but also can improve production capacity.
The peeled round base is first perforated or expanded, then heated by induction heating or a salt bath, coated with lubricant, and loaded into the extruder. The metal is squeezed into the pipe through the circular gap between the mandrel and the tip of the pen. This manufacturing process is mainly used for the production of superalloy tubes, specialty tubes, composite tubes and non-ferrous metal tubes. It has a wide range of production but low volumes. The production of extruded tubes has also grown in recent years due to improvements in die materials, lubricants and extrusion speeds.
This manufacturing process is used to produce small-diameter precision-shaped thin-walled low-carbon steel pipes. It is characterized by the use of multi-stage cycle manufacturing technology. In the 1960s, it began to develop in the direction of high speed, multi-line, long stroke and long tube blank. In addition, small roller mills have also been developed, mainly for the production of precision tubes with a thickness of less than 1mm. The cold rolling equipment is complex, the tool processing is difficult, and the specification conversion is not flexible. And usually a combined process of cold rolling and cold drawing is used, that is, cold rolling is used to reduce the wall thickness to obtain larger deformation, and cold drawing technology is used to obtain various specifications.
Alloy steel pipes are ideally suitable for chemical, petrochemicals, and other energy-related applications.
The alloy steel pipe adopts high quality carbon steel, alloy structural steel and stainless & heat resisting steel as raw material through hot rolling or cold drawn to be made.
Alloy steel can be used in process area where carbon steel has limitation such as
As an important element of steel products, alloy steel pipe can be divided into seamless steel pipe and welded steel pipe according to the manufacturing technique and tube billet shape.
Here you can see the common alloy steel grade that you will come across.
Why the application of alloy steel pipe is wider than others
There are many kinds of materials used for transport in industrial production. Specifically we will have more choices and it is not limited to the use of alloy steel pipe. But even in the face of more choices, many people tend to choose alloy steel pipe. People make their own choices will have their own reasons. This means the alloy steel pipe application has its own advantages. Compared with transmission lines made of other materials, after it meets the basic application requirements, its quantity is lighter. Then in the practical application of alloy steel pipe, it will have more advantages because of this. Besides its physical characteristic advantage, it also has economic advantages. The wide application of alloy steel pipe is with kinds of reasons. So in practical usage, we can exploit the advantages to the full, in this way can we get more profits in these applications of alloy steel pipe.
The transportation of kinds of gases or liquids in production needs to rely on alloy steel pipe. This shows that the actual role of alloy steel pipe application is important. High temperature resistant and low temperature resistant is the tolerance of temperature. In the practical application of alloy steel pipe, there will be many materials need to be transported. However their temperatures are not the same. So this can be the basic requirement to alloy steel pipe. It needs more corrosion resistance. Corrosion resistant material is the best material during transporting, because it is corrosion resistant. So it can be used in more occasions. And it is definitely very convenient for users.
Can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy steel pipe total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy steel pipe to provide a wider space for the development of the industry. The future needs of the average annual growth of China’s high-pressure alloy steel pipe long products up to 10-12%.
Alloy Steel pipe contains substantial quantities of elements other than carbon such as nickel, chromium, silicon, manganese, tungsten, molybdenum, vanadium and limited amounts of other commonly accepted elements such as manganese, sulfur, silicon, and phosphorous.
Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.
The biggest advantages of alloy steel pipe can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy tube total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy tube to provide a wider space for the development of the industry. According to the Chinese Special Steel Association alloy pipe Branch Expert Group, the future needs of the average annual growth of China’s high-pressure alloy pipe long products up to 10-12%.
Chemical composition inspection, mechanical properties test(tensile strength,yield strength, elongation, flaring, flattening, bending, hardness, impact test), surface and dimension test,no-destructive test, hydrostatic test.
identification of the chemical composition of the metal used to manufacture the fitting. Uses PMI sensors, including X-ray fluorescence or optical emission spectrometry.
Steel pipe delivery status(condition): cold / hard (BK), cold / soft (BKW), after cold stress relief annealing (BKS), annealing (GBK), normalized (NBK).
Term | Symbol | Explanation |
Cold-finished/hard (cold-finished as-drawn) | BK | No heat treatment after the last cold-forming process. The tubes therefore have only low deformability. |
Cold-finished/soft (lightly cold-worked) | BKW | After the last heat treatment there is a light finishing pass (cold drawing) With proper subsequent processing, the tube can be cold-formed (e.g. bent, expanded) within certain limits. |
Annealed | GBK | After the final cold-forming process the tubes are annealed in a controlled atmosphere or under vacuum. |
Normalized | NBK | The tubes are annealed above the upper transformation point in a controlled atmosphere or under vacuum. |
The general cold strip mills, volume should go through continuous annealing (CAPL unit) to eliminate cold hardening and rolling stress, or batch annealing reach the mechanical properties of the corresponding standard specifies. Cold rolled steel surface quality, appearance, dimensional accuracy better than hot-rolled plate, and right-rolled thin product thickness is about 0.18mm, so the majority of users favor.
Cold rolled steel coil substrate products deep processing of high value-added products. Such as electro-galvanized, hot dip galvanized, electro-galvanized fingerprint resistant, painted steel roll damping composite steel, PVC laminating steel plates, etc., so that the excellent quality of these products has a beautiful, high resistance to corrosion, has been widely used.
Cold rolled steel coil finishing after annealing, cut the head, tail, trimming, flattening, smooth, heavy volume, or longitudinal clipboard. Cold-rolled products are widely used in automobile manufacturing, household electrical appliances, instruments, switches, buildings, office furniture and other industries. Steel plate strapping package weight of 3 to 5 tons. Flat sub-volume typically 3 to 10 tons / volume. Coil diameter 6m.
Bare packing/bundle packing/crate packing/wooden protection at the both sides of tubes and suitably protected for sea-worthly delivery or as requested.
There are probably hundreds of different methods for packing a pipe, and most of them have merit, but there are two principles that are vital for any method to work prevent rusting and Sea transportation security.
Our packing can meet any needs of the customers.
Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.
Alloy steels are made by combining carbon steel with one or several alloying elements, such as manganese, silicon, nickel, titanium, copper, chromium and aluminum. These metals are added to produce specific properties that are not found in regular carbon steel. The elements are added in varying proportions (or combinations) making the material take on different aspects such as increased hardness, increased corrosion resistance, increased strength, improved formability (ductility); the weldability can also change.
Commonly used alloying elements and their effects are listed in the table given below.
Alloying Elements | Effect on the Properties |
---|---|
Chromium | Increases Resistance to corrosion and oxidation. Increases hardenability and wear resistance. Increases high temperature strength. |
Nickel | Increases hardenability. Improves toughness. Increases impact strength at low temperatures. |
Molybdenum | Increases hardenability, high temperature hardness, and wear resistance. Enhances the effects of other alloying elements. Eliminate temper brittleness in steels. Increases high temperature strength. |
Manganese | Increases hardenability. Combines with sulfur to reduce its adverse effects. |
Vanadium | Increases hardenability, high temperature hardness, and wear resistance. Improves fatigue resistance. |
Titanium | Strongest carbide former. Added to stainless steel to prevent precipitation of chromium carbide. |
Silicon | Removes oxygen in steel making. Improves toughness. Increases hardness ability |
Boron | Increases hardenability. Produces fine grain size. |
Aluminum | Forms nitride in nitriding steels. Produces fine grain size in casting. Removes oxygen in steel melting. |
Cobalt | Increases heat and wear resistance. |
Tungsten | Increases hardness at elevated temperatures. Refines grain size. |