35crmo Seamless Steel Pipe

35CrMo seamless steel pipe is a durable and reliable material that is suitable for various mechanical and industrial applications.

35crmo Seamless Steel Pipe

35CrMo steel material belongs to alloy structural steel. 35 refers to the carbon content of about 35%, Cr is chromium, and Mo is molybdenum.

35CrMo steel material has high static strength, high impact toughness, high fatigue limit, higher hardenability than 40Cr steel, high temperature resistance, long-term working temperature can reach 500 ℃, poor welding performance.

The main applications of 35CrMo steel material are: it can be processed into important structural parts working under high load, such as the transmission parts of vehicles and engines; the rotor, main shaft, transmission shaft of heavy load and large section parts of turbogenerator.

Chemical composition of 35CrMo steel material:

The mechanical properties of 35CrMo steel material were as follows:

Delivery condition: annealing / tempering.

Hardness: ≦229 HBW

Characteristic:35CrMo has high static strength, impact toughness and high fatigue limit, harden ability is higher than 40Cr , higher creep strength and lasting strength under high temperature , long-term working temperature up to 500 ℃.

Application: 35CrMo alloy pipe is used to manufacture important parts of various machines that bear the impact, twist and high

GB Steel pipe execution standard

According to incomplete statistics, there are more than 240 national standard steel pipe production enterprises and more than 250 seamless steel pipe units.

  1. GB/T8162-1999 (Seamless steel pipe for structure). Mainly used for general structure and mechanical structure. Its representative material (brand): carbon steel 20, 45 steel; alloy steel Q345, 20Cr, 40Cr, 20CrMo, 30-35CrMo, 42CrMo, etc.
  2. GB/T8163-1999 (Seamless steel pipe for fluid conveying). Mainly used in engineering and large equipment to transport fluid pipelines. The representative material (brand) is 20, Q345, etc.
  3. GB3087-1999 (Seamless steel pipes for low and medium pressure boilers). Mainly used in industrial boilers and domestic boilers to transport low and medium pressure fluid pipelines. Representative materials are 10 and 20 steel.
  4. GB5310-1995 (Seamless steel pipes for high-pressure boilers). Mainly used for high temperature and high pressure transmission fluid headers and pipelines in power stations and nuclear power plants Representative materials are 20G, 12Cr1MoVG, 15CrMoG, etc.
  5. GB5312-1999 (Carbon steel and carbon manganese steel seamless steel pipe for ships). Mainly used for I and II pressure pipes for marine boilers and superheaters. Representative materials are 360, 410, 460 steel grades, etc.
  6. GB1479-2000 (Seamless steel tubes for high-pressure fertilizer equipment). Mainly used for conveying high temperature and high pressure fluid pipelines on fertilizer equipment. Representative materials are 20, 16Mn, 12CrMo, 12Cr2Mo, etc.
  7. GB9948-1988 (Seamless steel pipe for petroleum cracking). Mainly used in boilers, heat exchangers and fluid pipelines of petroleum smelters. Its representative materials are 20, 12CrMo, 1Cr5Mo, 1Cr19Ni11Nb, etc.
  8. GB18248-2000 (Seamless steel pipe for gas cylinders). Mainly used to make various gas and hydraulic cylinders. Its representative materials are 37Mn, 34Mn2V, 35CrMo, etc.
  9. GB/T17396-1998 (Hot-rolled seamless steel pipe for hydraulic props). Mainly used to make coal mine hydraulic supports, cylinders and columns, and other hydraulic cylinders and columns. Its representative materials are 20, 45, 27SiMn, etc.
  10. GB3093-1986 (High-pressure seamless steel pipe for diesel engine). Mainly used for high pressure oil pipe of diesel engine injection system. The steel pipe is generally cold drawn, and its representative material is 20A.
  11. GB/T3639-1983 (Cold drawn or cold rolled precision seamless steel tube). It is mainly used for steel pipes for mechanical structures and carbon pressure equipment, requiring high dimensional accuracy and good surface finish. Its representative materials are 20, 45 steel, etc.
  12. GB/T3094-1986 (Cold drawn seamless steel pipe special-shaped steel pipe). It is mainly used to make various structural parts and parts, and its materials are high-quality carbon structural steel and low-alloy structural steel.
  13. GB/T8713-1988 (Precision inner diameter seamless steel pipe for hydraulic and pneumatic cylinders). It is mainly used to make cold-drawn or cold-rolled seamless steel pipes with precise inner diameters for hydraulic and pneumatic cylinders. Its representative materials are 20, 45 steel, etc.
  14. GB3093-1986 (High-pressure seamless steel pipes for diesel engines). Mainly used for high pressure oil pipe of diesel engine injection system. The steel pipe is generally cold drawn, and its representative material is 20A.
  15. GB/T3639-1983 (Cold drawn or cold rolled precision seamless steel tube). It is mainly used for steel pipes for mechanical structures and carbon pressure equipment, requiring high dimensional accuracy and good surface finish. Its representative materials are 20, 45 steel, etc.
  16. GB/T3094-1986 (Cold drawn seamless steel pipe special-shaped steel pipe). It is mainly used to make various structural parts and parts, and its materials are high-quality carbon structural steel and low-alloy structural steel.
  17. GB/T8713-1988 (Precision inner diameter seamless steel pipe for hydraulic and pneumatic cylinders). It is mainly used to make cold-drawn or cold-rolled seamless steel pipes with precise inner diameters for hydraulic and pneumatic cylinders. Its representative materials are 20, 45 steel, etc.
  18. GB13296-1991 (Stainless steel seamless steel tubes for boilers and heat exchangers). Mainly used in boilers, superheaters, heat exchangers, condensers, catalytic tubes, etc. of chemical enterprises. Used high temperature, high pressure, corrosion resistant steel pipe. Its representative materials are 0Cr18Ni9, 1Cr18Ni9Ti, 0Cr18Ni12Mo2Ti, etc.
  19. GB/T14975-1994 (Stainless steel seamless steel pipe for structure). It is mainly used for general structure (hotel and restaurant decoration) and mechanical structure of chemical enterprises, which are resistant to atmospheric and acid corrosion and have certain strength. Its representative materials are 0-3Cr13, 0Cr18Ni9, 1Cr18Ni9Ti, 0Cr18Ni12Mo2Ti, etc.
  20. GB/T14976-1994 (Stainless steel seamless steel pipe for fluid transportation). Mainly used for pipelines that transport corrosive media. Representative materials are 0Cr13, 0Cr18Ni9, 1Cr18Ni9Ti, 0Cr17Ni12Mo2, 0Cr18Ni12Mo2Ti, etc.
  21. YB/T5035-1993 (Seamless steel pipe for automobile axle casing). It is mainly used to make high-quality carbon structural steel and alloy structural steel hot-rolled seamless steel pipes for automobile half-axle sleeves and drive axle axle tubes. Its representative materials are 45, 45Mn2, 40Cr, 20CrNi3A, etc.

Chemistry constitute table of main product steel grade

Steel Grade  Chemistry Constitute
C Si Mn Cr Ni Mo P S Ti Cu
Q195 0.06-0.12 ≤0.30 0.25-0.50 ≤0.3 ≤0.3 - ≤0.045 ≤0.050 - ≤0.30
Q235 0.14-0.22 ≤0.30 0.30-0.65 ≤0.3 ≤0.3 - ≤0.045 ≤0.050 - ≤0.30
Q345B ≤0.20 ≤0.55 1.00-1.60 - - - ≤0.040 ≤0.040 - -
10# 0.07-0.13 0.07-0.37 0.35-0.65 ≤0.15 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25
20# 0.17-0.23 0.07-0.37 0.35-0.65 ≤0.25 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25
35# 0.32-0.39 0.07-0.37 0.50-0.80 ≤0.25 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25
45# 0.42-0.50 0.07-0.37 0.50-0.80 ≤0.25 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25
20Cr 0.18-0.24 0.07-0.37 0.50-0.80 0.70-1.00 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
40Cr 0.37-0.44 0.07-0.37 0.50-0.80 0.80-1.10 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
20CrMo 0.17-0.24 0.07-0.37 0.40-0.70 0.80-1.10 ≤0.3 0.15-0.25 ≤0.035 ≤0.035 - ≤0.30
30CrMo 0.26-0.34 0.07-0.37 0.40-0.70 0.80-1.10 ≤0.3 0.15-0.25 ≤0.035 ≤0.035 - ≤0.30
35CrMo 0.32-0.40 0.07-0.37 0.40-0.70 0.80-1.10 ≤0.3 0.15-0.25 ≤0.035 ≤0.035 - ≤0.30
42CrMo 0.38-0.45 0.07-0.37 0.50-0.80 0.90-1.20 1.00-1.40 0.15-0.25 ≤0.035 ≤0.035 - ≤0.30
20CrMoTi 0.17-0.23 0.07-0.37 0.40-0.70 0.45-0.75 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
35Mn2 0.32-0.39 0.07-0.37 1.40-1.80 ≤0.3 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
40Mn2 0.37-0.44 0.07-0.37 1.40-1.80 ≤0.3 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
35SiMn 0.32-0.40 1.10-1.40 1.10-1.40 ≤0.3 ≤0.3 - ≤0.035 ≤0.035 - ≤0.30
15Mn 0.12-0.16 0.07-0.37 0.70-1.00 ≤0.25 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25
20Mn 0.17-0.23 0.07-0.37 0.70-1.00 ≤0.25 ≤0.3 - ≤0.035 ≤0.035 - ≤0.25

GB steel pipe size and tolerance

Deviation level Standardized outer diameter tolerance
D1 ±1.5%,min ±0.75 mm
D2 ±1.0%。min ±0.50 mm
D3 ±0.75%.min±0.30 mm
D4 ±0.50%。min ±0.10 mm

Process

Cold drawn seamless steel tube deformed process

Cold Drawn Seamless Mechanical Tubing (CDS) is a cold drawn 1018/1026 steel tube which offers uniform tolerances, enhanced machinability and increased strength and tolerances compared to hot-rolled products.

Cold drawn seamless steel tube deformed process

Cold drawn steel tube is with hot-rolled steel coil as raw material, and tandem cold rolling pickled to remove oxide scale, its finished rolling hard roll, rolling hard volumes due to the continuous cold deformation caused by cold hardening strength, hardness increased indicators declined tough plastic, stamping performance will deteriorate, which can only be used for simple deformation of the parts.

Rolling hard roll can be used as the raw material of the hot-dip galvanizing plant, hot dip galvanizing line set annealing line. Rolling hard roll weight is generally 6 to 13.5 tons, the coil diameter of 610mm.

Hot rolled seamless steel pipe deformed process

Hot-rolled seamless steel pipe production base deformation process can be summarized as three stages: perforation, extension and finishing.

Hot rolled seamless steel pipe deformed process

The main purpose of the perforation process is to become a solid round billet piercing hollow shell. Capillary in the specifications, accuracy and surface quality can not meet the requirements of the finished product, further improvements are needed to deform the metal through. The main purpose of the stretching machine is further reduced sectional view (main compression wall) for a larger axial extension, so that the capillary improved dimensional accuracy, surface quality and organizational performance.

After stretching machine rolled steel pipe shortage collectively need further molding mill in order to achieve the requirements of the finished pipe. Rolled steel due to pass in the method widely used in the production of seamless steel tubes.

So far, due to the method pass rolling steel can be divided into two categories: core pension without rolling rolling (hollow body rolling), and with the mandrel. Sizing machines, reducing mill and stretch reducing mill belonging to the hole without mandrel type continuous rolling mills are generally coffin. Its main purpose is to reduce the diameter of the deformation process or sizing get finished steel, the wall thickness of process control, can make thinning, thickening or nearly unchanged.

All the traditional hole-type rolling machine with mandrel belong to extend machine. The main purpose is to reduce the deformation process perforated capillary wall thickness and outer diameter roll passes in the deformation zone and the mandrel posed, for a larger axial extension. At the same time a certain improvement in the organization, performance, accuracy, surface quality.

Cut to Length

Before cutting pipe and tubing

No matter the material, measure the diameter of the pipe or tube to be cut to ensure that you use the right-size tube cutter for the job. When determining how to make a straight cut, use a tape measure and a pencil or other writing instrument to mark on the surface where you want to cut. If possible, mark around the circumference of a pipe, especially when cutting with a handsaw. Ensure that a cut is as straight as possible by securing the pipe with a vise, clamp, miter box or even duct tape to keep the length from shifting out of place while cutting.

After cutting pipe and tubing

  • Unless a cut is perfectly clean, you should expect to remove burrs from around the edge, especially after sawing.
  • Use a deburring tool to clean the edge after tube cutting.
  • You may opt to use a metal file on the cut of a metal pipe.
Cut to length

The main manufacturing technology of seamless carbon steel pipe

1.Plug rolling production

The production equipment consists of punching machine, automatic pipe rolling machine, coiling machine, sizing machine and reducing machine. The round tube is inserted into the hollow of the thick-walled tube, and the axes of the two rollers form an oblique angle with the rolling line. In recent years, the inclination angle has increased from 6° to 12° to 13° to 17°, increasing the speed of the punch. When producing structural seamless pipe with a diameter greater than 250mm, secondary perforation is used to reduce the thickness of the hollow billet wall. New technologies have also been developed to enhance the perforation process and improve the quality of the capillary.

2. Continuous rolling production

The production equipment includes punching machine, continuous rolling mill, and tension reduction machine. The round billet is pierced into a hollow billet, then inserted into the mandrel, and continuously rolled by 7 to 9 two-roll mills. After rolling, the mandrel bar is taken out and reheated to reduce tension. In 2014, the annual output of 140mm continuous rolling mills is 0.4 to 600,000 tons, which is 2 to 4 times that of plug mills. The characteristics of this unit are suitable for the production of steel pipes with a diameter of 168mm or less. However, the equipment investment is large, the installed capacity is large, and the processing and manufacturing are complex.

3. Three-roll rolling production

Three-roll rolling production is mainly used to produce thick-walled seamless steel pipes with high dimensional accuracy. The wall thickness accuracy of the seamless steel pipe produced by this manufacturing process can reach plus or minus 5%, and the pipe accuracy is twice that of the seamless steel pipe produced by other methods. This manufacturing technique developed rapidly with the invention of the new three-high skew rolling mill in the 1960s. The new type of rolling mill is characterized by rapidly rotating the inlet rotary rack to change the expansion angle of the tail, thereby preventing the triangle from appearing at the tail, and expanding the ratio of the outer diameter to the wall thickness of the production varieties from 12 to 35, which can not only produce thin-walled seamless welded steel pipes , but also can improve production capacity.

4. Extrusion tube production

The peeled round base is first perforated or expanded, then heated by induction heating or a salt bath, coated with lubricant, and loaded into the extruder. The metal is squeezed into the pipe through the circular gap between the mandrel and the tip of the pen. This manufacturing process is mainly used for the production of superalloy tubes, specialty tubes, composite tubes and non-ferrous metal tubes. It has a wide range of production but low volumes. The production of extruded tubes has also grown in recent years due to improvements in die materials, lubricants and extrusion speeds.

5. Cold rolling (cold drawing) production

This manufacturing process is used to produce small-diameter precision-shaped thin-walled low-carbon steel pipes. It is characterized by the use of multi-stage cycle manufacturing technology. In the 1960s, it began to develop in the direction of high speed, multi-line, long stroke and long tube blank. In addition, small roller mills have also been developed, mainly for the production of precision tubes with a thickness of less than 1mm. The cold rolling equipment is complex, the tool processing is difficult, and the specification conversion is not flexible. And usually a combined process of cold rolling and cold drawing is used, that is, cold rolling is used to reduce the wall thickness to obtain larger deformation, and cold drawing technology is used to obtain various specifications.


Application

Alloy steel pipes are ideally suitable for chemical, petrochemicals, and other energy-related applications.

The alloy steel pipe adopts high quality carbon steel, alloy structural steel and stainless & heat resisting steel as raw material through hot rolling or cold drawn to be made.

Alloy steel can be used in process area where carbon steel has limitation such as

  • High-temperature services such as heater tubes
  • Low-temperature services such as cryogenic application
  • Very high presser service such as steam header

As an important element of steel products, alloy steel pipe can be divided into seamless steel pipe and welded steel pipe according to the manufacturing technique and tube billet shape.

Here you can see the common alloy steel grade that you will come across.

  • For Pipes: ASTM A335 Gr P1, P5, P11, P9
  • For Wrought Fittings: ASTM A234 Gr.WP5, WP9, WP11
  • For Forged Fittings: ASTM A182 F5, F9, F11 etc.

Why the application of alloy steel pipe is wider than others

application

There are many kinds of materials used for transport in industrial production. Specifically we will have more choices and it is not limited to the use of alloy steel pipe. But even in the face of more choices, many people tend to choose alloy steel pipe. People make their own choices will have their own reasons. This means the alloy steel pipe application has its own advantages. Compared with transmission lines made of other materials, after it meets the basic application requirements, its quantity is lighter. Then in the practical application of alloy steel pipe, it will have more advantages because of this. Besides its physical characteristic advantage, it also has economic advantages. The wide application of alloy steel pipe is with kinds of reasons. So in practical usage, we can exploit the advantages to the full, in this way can we get more profits in these applications of alloy steel pipe.

What requirements should alloy steel pipe application meet

The transportation of kinds of gases or liquids in production needs to rely on alloy steel pipe. This shows that the actual role of alloy steel pipe application is important. High temperature resistant and low temperature resistant is the tolerance of temperature. In the practical application of alloy steel pipe, there will be many materials need to be transported. However their temperatures are not the same. So this can be the basic requirement to alloy steel pipe. It needs more corrosion resistance. Corrosion resistant material is the best material during transporting, because it is corrosion resistant. So it can be used in more occasions. And it is definitely very convenient for users.

The biggest advantages of alloy steel pipe

Can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy steel pipe total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy steel pipe to provide a wider space for the development of the industry. The future needs of the average annual growth of China’s high-pressure alloy steel pipe long products up to 10-12%.

Specification, standard and identification of alloy steel pipes

Alloy Steel pipe contains substantial quantities of elements other than carbon such as nickel, chromium, silicon, manganese, tungsten, molybdenum, vanadium and limited amounts of other commonly accepted elements such as manganese, sulfur, silicon, and phosphorous.

Industries We Serve

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The biggest advantages of alloy steel pipe can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy tube total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy tube to provide a wider space for the development of the industry. According to the Chinese Special Steel Association alloy pipe Branch Expert Group, the future needs of the average annual growth of China’s high-pressure alloy pipe long products up to 10-12%.


Inspection

Chemical composition inspection, mechanical properties test(tensile strength,yield strength, elongation, flaring, flattening, bending, hardness, impact test), surface and dimension test,no-destructive test, hydrostatic test.

PMI

identification of the chemical composition of the metal used to manufacture the fitting. Uses PMI sensors, including X-ray fluorescence or optical emission spectrometry.

PMI
PMI
PMI
PMI
PMI
PMI

Size measurement

Size measurement
Size measurement
Size measurement
Size measurement
Size measurement

Seamless pipes with compound bevels as per ASME B16-25 And ASTM A333

ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe

Delivery

Steel pipe delivery status(condition)

Steel pipe delivery status(condition): cold / hard (BK), cold / soft (BKW), after cold stress relief annealing (BKS), annealing (GBK), normalized (NBK).

Condition on delivery of steel pipe

Term Symbol Explanation
Cold-finished/hard (cold-finished as-drawn) BK No heat treatment after the last cold-forming process. The tubes therefore have only low deformability.
Cold-finished/soft (lightly cold-worked) BKW After the last heat treatment there is a light finishing pass (cold drawing) With proper subsequent processing, the tube can be cold-formed (e.g. bent, expanded) within certain limits.
Annealed GBK After the final cold-forming process the tubes are annealed in a controlled atmosphere or under vacuum.
Normalized NBK The tubes are annealed above the upper transformation point in a controlled atmosphere or under vacuum.

The general cold strip mills, volume should go through continuous annealing (CAPL unit) to eliminate cold hardening and rolling stress, or batch annealing reach the mechanical properties of the corresponding standard specifies. Cold rolled steel surface quality, appearance, dimensional accuracy better than hot-rolled plate, and right-rolled thin product thickness is about 0.18mm, so the majority of users favor.

Cold rolled steel coil substrate products deep processing of high value-added products. Such as electro-galvanized, hot dip galvanized, electro-galvanized fingerprint resistant, painted steel roll damping composite steel, PVC laminating steel plates, etc., so that the excellent quality of these products has a beautiful, high resistance to corrosion, has been widely used.

Cold rolled steel coil finishing after annealing, cut the head, tail, trimming, flattening, smooth, heavy volume, or longitudinal clipboard. Cold-rolled products are widely used in automobile manufacturing, household electrical appliances, instruments, switches, buildings, office furniture and other industries. Steel plate strapping package weight of 3 to 5 tons. Flat sub-volume typically 3 to 10 tons / volume. Coil diameter 6m.

Packing

Bare packing/bundle packing/crate packing/wooden protection at the both sides of tubes and suitably protected for sea-worthly delivery or as requested.

There are probably hundreds of different methods for packing a pipe, and most of them have merit, but there are two principles that are vital for any method to work prevent rusting and Sea transportation security.

Steel strips bunding for fixed pipes

Our packing can meet any needs of the customers.

Packing
Packing
Packing
Packing
Packing
Packing

Placing steel pipes into containers

Packing
Packing
Packing
Packing
Packing
Packing
FAQ

Q&A

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The most important and desired changes in alloy steel are

Alloy steels are made by combining carbon steel with one or several alloying elements, such as manganese, silicon, nickel, titanium, copper, chromium and aluminum. These metals are added to produce specific properties that are not found in regular carbon steel. The elements are added in varying proportions (or combinations) making the material take on different aspects such as increased hardness, increased corrosion resistance, increased strength, improved formability (ductility); the weldability can also change.

Alloying Elements & Their Effects

Pipes, Tubes and Hollow Sections

Norms

Grade

Alloying Elements

Commonly used alloying elements and their effects are listed in the table given below.

Alloying Elements Effect on the Properties
Chromium Increases Resistance to corrosion   and oxidation. Increases hardenability and wear resistance. Increases high   temperature strength.
Nickel Increases hardenability. Improves   toughness. Increases impact strength at low temperatures.
Molybdenum Increases hardenability, high   temperature hardness, and wear resistance. Enhances the effects of other   alloying elements. Eliminate temper brittleness in steels. Increases high   temperature strength.
Manganese Increases hardenability. Combines   with sulfur to reduce its adverse effects.
Vanadium Increases hardenability, high   temperature hardness, and wear resistance. Improves fatigue resistance.
Titanium Strongest carbide former. Added to   stainless steel to prevent precipitation of chromium carbide.
Silicon Removes oxygen in steel making.   Improves toughness. Increases hardness ability
Boron Increases hardenability. Produces   fine grain size.
Aluminum Forms nitride in nitriding steels.   Produces fine grain size in casting. Removes oxygen in steel melting.
Cobalt Increases heat and wear   resistance.
Tungsten Increases hardness at elevated   temperatures. Refines grain size.

Hot products

Star

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.